438 research outputs found

    The brain decade in debate: II. Panic or anxiety? From animal models to a neurobiological basis

    Get PDF
    This article is a transcription of an electronic symposium sponsored by the Brazilian Society of Neuroscience and Behavior (SBNeC). Invited researchers from the European Union, North America and Brazil discussed two issues on anxiety, namely whether panic is a very intense anxiety or something else, and what aspects of clinical anxiety are reproduced by animal models. Concerning the first issue, most participants agreed that generalized anxiety and panic disorder are different on the basis of clinical manifestations, drug response and animal models. Also, underlying brain structures, neurotransmitter modulation and hormonal changes seem to involve important differences. It is also common knowledge that existing animal models generate different types of fear/anxiety. A challenge for future research is to establish a good correlation between animal models and nosological classification.Universidade Federal do Paraná Departamento de Farmacologia Laboratório de Fisiologia e Farmacologia do Sistema Nervoso CentralUniversity of Hawaii Department of NeurobiologyUniversity of Hawaii Department of PsychologyUniversidade de São Paulo Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Departamento de PsicobiologiaUniversidade de São Paulo Faculdade de Medicina de Ribeirão Preto Departamento de FisiologiaUniversidade de São Paulo Faculdade de Medicina de Ribeirão Preto Departamento de NeuropsiquiatriaUniversidade Federal de Santa Catarina Departamento de FarmacologiaCentral Nervous System Research Department Sanofi SynthelaboAston University Institute of Pharmaceutical SciencesHoffmann-La Roche Ltd.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de PsicologiaUniversity of Leeds Department of Psychology Ethopharmacology LaboratoryUniversidade Federal do Espírito Santo Centro de Biomedicina Departamento de Ciências FisiológicasUNIFESP, EPM, Depto. de PsicologiaSciEL

    Frictional drag between non-equilibrium charged gases

    Full text link
    The frictional drag force between separated but coupled two-dimensional electron gases of different temperatures is studied using the non-equilibrium Green function method based on the separation of center-of-mass and relative dynamics of electrons. As the mechanisms of producing the frictional force we include the direct Coulomb interaction, the interaction mediated via virtual and real TA and LA phonons, optic phonons, plasmons, and TA and LA phonon-electron collective modes. We found that, when the distance between the two electron gases is large, and at intermediate temperature where plasmons and collective modes play the most important role in the frictional drag, the possibility of having a temperature difference between two subsystems modifies greatly the transresistivity.Comment: 8figure

    An ALMA Survey of the SCUBA-2 Cosmology Legacy Survey UKIDSS/UDS Field: The Far-infrared/Radio Correlation for High-redshift Dusty Star-forming Galaxies

    Get PDF
    We study the radio properties of 706 submillimeter galaxies (SMGs) selected at 870 μm with the Atacama Large Millimeter Array from the SCUBA-2 Cosmology Legacy Survey map of the Ultra Deep Survey field. We detect 273 SMGs at >4σ in deep Karl G. Jansky Very Large Array 1.4 GHz observations, of which a subset of 45 SMGs are additionally detected in 610 MHz Giant Metre-Wave Radio Telescope imaging. We quantify the far-infrared/radio correlation (FIRRC) through parameter q IR, defined as the logarithmic ratio of the far-infrared and radio luminosity, and include the radio-undetected SMGs through a stacking analysis. We determine a median q IR = 2.20 ± 0.03 for the full sample, independent of redshift, which places these z ~ 2.5 dusty star-forming galaxies 0.44 ± 0.04 dex below the local correlation for both normal star-forming galaxies and local ultra-luminous infrared galaxies (ULIRGs). Both the lack of redshift evolution and the offset from the local correlation are likely the result of the different physical conditions in high-redshift starburst galaxies, compared to local star-forming sources. We explain the offset through a combination of strong magnetic fields (B gsim 0.2 mG), high interstellar medium (ISM) densities and additional radio emission generated by secondary cosmic rays. While local ULIRGs are likely to have similar magnetic field strengths, we find that their compactness, in combination with a higher ISM density compared to SMGs, naturally explains why local and high-redshift dusty star-forming galaxies follow a different FIRRC. Overall, our findings paint SMGs as a homogeneous population of galaxies, as illustrated by their tight and nonevolving far-infrared/radio correlation
    corecore