24 research outputs found

    On the origins of American Criollo pigs: A common genetic background with a lasting Iberian signature

    Get PDF
    American Criollo pigs are thought to descend mainly from those imported from the Iberian Peninsula starting in the late 15th century. Criollo pigs subsequently expanded throughout the Americas, adapting to very diverse environments, and possibly receiving influences from other origins. With the intensification of agriculture in the mid-20th century, cosmopolitan breeds largely replaced Criollo pigs, and the few remaining are mostly maintained by rural communities in marginal areas where they still play an important socio-economic and cultural role. In this study, we used 24 microsatellite markers in samples from 1715 pigs representing 46 breeds with worldwide distribution, including 17 American Criollo breeds, with the major focus of investigating their genetic diversity, structure and breed relationships. We also included representatives of the Iberian, Local British, Hungarian, Chinese and Commercial breeds, as well as Wild Boar, in order to investigate their possible influence in the genetic composition of Criollos. Our results show that, when compared with the other breeds, Criollo pigs present higher levels of genetic diversity, both in terms of allelic diversity and expected heterozygosity. The various analyses indicate that breed differentiation overall explains nearly 21% of the total genetic diversity. Criollo breeds showed their own identity and shared a common genetic background, tending to cluster together in various analyses, even though they differ from each other. A close relationship of Criollos with Iberian breeds was revealed by all the different analyses, and the contribution of Iberian breeds, particularly of the Celtic breeds, is still present in various Criollo breeds. No influence of Chinese breeds was detected on Criollos, but a few were influenced by Commercial breeds or by wild pigs. Our results confirm the uniqueness of American Criollo pigs and the role that Iberian breeds have played in their development. © 2021 Revidatti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)

    Supplementary Material for: Consumption of Amaranth Induces the Accumulation of the Antioxidant Protein Paraoxonase/Arylesterase 1 and Modulates Dipeptidyl Peptidase IV Activity in Plasma of Streptozotocin-Induced Hyperglycemic Rats

    No full text
    <b><i>Background/Aim:</i></b> Amaranth is a source of several bioactive compounds, among which peptides with inhibitory activity upon dipeptidyl peptidase IV (DPP-IV) have been reported. However, there is no information about the action of amaranth DPP-IV-inhibitory peptides using in vivo models. The aim of this work was to evaluate the effect of amaranth consumption on plasma and kidney DPP-IV activity as well the changes in plasma proteome profile of streptozotocin (STZ)-induced hyperglycemic rats. <b><i>Methods:</i></b> Rats were fed for 12 weeks with a diet containing 20% popped amaranth grain. Kidneys and blood samples were collected for lipid profile, DPP-IV activity and expression, and proteomic analysis. <b><i>Results:</i></b> Total cholesterol and DPP-IV activity in plasma was increased in hyperglycemic rats, but this effect was reverted by amaranth consumption. Triacylglycerols were increased in the hyperglycemic group fed amaranth, and the highest levels of high-density lipoproteins were also observed in this group. These data correlated with the accumulation of apolipoprotein A-II in plasma. Accumulation of the antioxidant protein paraoxonase/arylesterase 1 in STZ-induced hyperglycemic rats was observed when amaranth was supplied in the diet. <b><i>Conclusion:</i></b> This study provides new insights into the molecular mechanisms by which amaranth exerts its beneficial health action in a hyperglycemic state

    Reducing the energy demand of cellulosic ethanol through salt extractive distillation enabled by electrodialysis

    Get PDF
    One of the main challenges when a biochemical conversion technique is employed to produce cellulosic ethanol is the low concentration of ethanol in the fermentation broth, which increases the energy demand for recovering and purifying ethanol to fuel grade. In this study, two design cases implementing salt extractive distillation – with salt recovery enabled by a novel scheme of electrodialysis and spray drying – along with heat integrated distillation techniques of double-effect distillation and direct vapor recompression are investigated through process simulation with Aspen Plus® 2006.5 for reducing the thermal energy demand. Conventional distillation along with molecular sieve based dehydration is considered as the base case. Salt extractive distillation along with direct vapor recompression is found to be the most economical ethanol recovery approach for cellulosic ethanol with a thermal energy demand of 7.1 MJ/L (natural gas energy equivalents, higher heating value), which corresponds to a thermal energy savings of 23% and cost savings of 12% relative to the base case separation train thermal energy demand and total annual cost
    corecore