45 research outputs found
Resonant tunneling and the multichannel Kondo problem: the quantum Brownian motion description
We study mesoscopic resonant tunneling as well as multichannel Kondo problems
by mapping them to a first-quantized quantum mechanical model of a particle
moving in a multi-dimensional periodic potential with Ohmic dissipation. From a
renormalization group analysis, we obtain phase diagrams of the quantum
Brownian motion model with various lattice symmetries. For a symmorphic
lattice, there are two phases at T=0: a localized phase in which the particle
is trapped in a potential minimum, and a free phase in which the particle is
unaffected by the periodic potential. For a non-symmorphic lattice, however,
there may be an additional intermediate phase in which the particle is neither
localized nor completely free. The fixed point governing the intermediate phase
is shown to be identical to the well-known multichannel Kondo fixed point in
the Toulouse limit as well as the resonance fixed point of a quantum dot model
and a double-barrier Luttinger liquid model. The mapping allows us to compute
the fixed-poing mobility of the quantum Brownian motion model exactly,
using known conformal-field-theory results of the Kondo problem. From the
mobility, we find that the peak value of the conductance resonance of a
spin-1/2 quantum dot problem is given by . The scaling form of the
resonance line shape is predicted
Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins
Barley stripe mosaic virus (BSMV) induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB) proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB) treatments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW). BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3
Interacting one dimensional electron gas with open boundaries
We discuss the properties of interacting electrons on a finite chain with
open boundary conditions. We extend the Haldane Luttinger liquid description to
these systems and study how the presence of the boundaries modifies various
correlation functions. In view of possible experimental applications to quantum
wires, we analyse how tunneling measurements can reveal the underlying
Luttinger liquid properties. The two terminal conductance is calculated. We
also point out possible applications to quasi one dimensional materials and
study the effects of magnetic impurities.Comment: 38 pages, ReVTeX, 7 figures (available upon request
Modelling the prestress transfer in pre-tensioned concrete elements
Three models were developed to simulate the transfer of prestress force from steel to concrete in pre-tensioned concrete elements. The first is an analytical model based on the thick-walled cylinder theory and considers linear material properties for both steel and concrete. The second is an axi-symmetric finite element (FE) model with linear material properties; it is used to verify the analytical model. The third model is a three dimensional nonlinear FE model. This model considers the post-cracking behaviour of concrete as well as concrete shrinkage and the time of prestress releasing. A new expression from the analytical model is developed to estimate the transmission length as well as the stress distribution along the tendon. The paper also presents a parametric study to illustrate the impact of diameter of prestressing steel, concrete cover, concrete strength, initial prestress, section size, surface roughness of prestressing steel, time of prestress release, and the member length on the transfer of stress in pre-tensioned concrete elements
Time-dependent Stochastic Modeling of Solar Active Region Energy
A time-dependent model for the energy of a flaring solar active region is
presented based on a stochastic jump-transition model (Wheatland and Glukhov
1998; Wheatland 2008; Wheatland 2009). The magnetic free energy of the model
active region varies in time due to a prescribed (deterministic) rate of energy
input and prescribed (random) flare jumps downwards in energy. The model has
been shown to reproduce observed flare statistics, for specific
time-independent choices for the energy input and flare transition rates.
However, many solar active regions exhibit time variation in flare
productivity, as exemplified by NOAA active region AR 11029 (Wheatland 2010).
In this case a time-dependent model is needed. Time variation is incorporated
for two cases: 1. a step change in the rates of flare jumps; and 2. a step
change in the rate of energy supply to the system. Analytic arguments are
presented describing the qualitative behavior of the system in the two cases.
In each case the system adjusts by shifting to a new stationary state over a
relaxation time which is estimated analytically. The new model retains
flare-like event statistics. In each case the frequency-energy distribution is
a power law for flare energies less than a time-dependent rollover set by the
largest energy the system is likely to attain at a given time. For Case 1, the
model exhibits a double exponential waiting-time distribution, corresponding to
flaring at a constant mean rate during two intervals (before and after the step
change), if the average energy of the system is large. For Case 2 the
waiting-time distribution is a simple exponential, again provided the average
energy of the system is large. Monte Carlo simulations of Case~1 are presented
which confirm the analytic estimates. The simulation results provide a
qualitative model for observed flare statistics in active region AR 11029.Comment: 25 pages, 9 figure
Microflares and the Statistics of X-ray Flares
This review surveys the statistics of solar X-ray flares, emphasising the new
views that RHESSI has given us of the weaker events (the microflares). The new
data reveal that these microflares strongly resemble more energetic events in
most respects; they occur solely within active regions and exhibit
high-temperature/nonthermal emissions in approximately the same proportion as
major events. We discuss the distributions of flare parameters (e.g., peak
flux) and how these parameters correlate, for instance via the Neupert effect.
We also highlight the systematic biases involved in intercomparing data
representing many decades of event magnitude. The intermittency of the
flare/microflare occurrence, both in space and in time, argues that these
discrete events do not explain general coronal heating, either in active
regions or in the quiet Sun.Comment: To be published in Space Science Reviews (2011
Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev
7191/Mar294
Identification of type 2 diabetes loci in 433,540 East Asian individuals
Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D)1,2; however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells3. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes—NKX6-3 and ANK1—in different tissues4–6. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways
A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic
The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world