21 research outputs found

    On the pathwidth of almost semicomplete digraphs

    Full text link
    We call a digraph {\em hh-semicomplete} if each vertex of the digraph has at most hh non-neighbors, where a non-neighbor of a vertex vv is a vertex uvu \neq v such that there is no edge between uu and vv in either direction. This notion generalizes that of semicomplete digraphs which are 00-semicomplete and tournaments which are semicomplete and have no anti-parallel pairs of edges. Our results in this paper are as follows. (1) We give an algorithm which, given an hh-semicomplete digraph GG on nn vertices and a positive integer kk, in (h+2k+1)2knO(1)(h + 2k + 1)^{2k} n^{O(1)} time either constructs a path-decomposition of GG of width at most kk or concludes correctly that the pathwidth of GG is larger than kk. (2) We show that there is a function f(k,h)f(k, h) such that every hh-semicomplete digraph of pathwidth at least f(k,h)f(k, h) has a semicomplete subgraph of pathwidth at least kk. One consequence of these results is that the problem of deciding if a fixed digraph HH is topologically contained in a given hh-semicomplete digraph GG admits a polynomial-time algorithm for fixed hh.Comment: 33pages, a shorter version to appear in ESA 201

    Nonperturbative late time asymptotics for heat kernel in gravity theory

    Full text link
    Recently proposed nonlocal and nonperturbative late time behavior of the heat kernel is generalized to curved spacetimes. Heat kernel trace asymptotics is dominated by two terms one of which represents a trivial covariantization of the flat-space result and another one is given by the Gibbons-Hawking integral over asymptotically-flat infinity. Nonlocal terms of the effective action generated by this asymptotics might underly long- distance modifications of the Einstein theory motivated by the cosmological constant problem. New mechanisms of the cosmological constant induced by infrared effects of matter and graviton loops are briefly discussed.Comment: 22 pages, LaTeX, final version, to be published in Phys. Rev.

    Quantum Dirac constraints, Ward identities and path integral in relativistic gauge

    Get PDF
    Quantum Dirac constraints in generic constrained system are solved by directly calculating in the one-loop approximation the path integral with relativistic gauge fixing procedure. The calculations are based on the reduction algorithms for functional determinants extended to gauge theories. Explicit mechanism of transition from relativistic gauge conditions to unitary gauges, participating in the construction of this solution, is revealed by the method of Ward identities.Comment: 12 pages, LaTe

    Nonlocal action for long-distance modifications of gravity theory

    Full text link
    We construct the covariant nonlocal action for recently suggested long-distance modifications of gravity theory motivated by the cosmological constant and cosmological acceleration problems. This construction is based on the special nonlocal form of the Einstein-Hilbert action explicitly revealing the fact that this action within the covariant curvature expansion begins with curvature-squared terms. Nonlocal form factors in the action of both quantum and brane-induced nature are briefly discussed. In particular, it is emphasized that for certain class of quantum initial value problems nonlocal nature of the Euclidean action does not contradict the causality of effective equations of motion.Comment: 13 pages, LaTeX, final version to appear in Phys. Lett.

    Effective equations of motion and initial conditions for inflation in quantum cosmology

    Full text link
    We obtain effective equations of inflationary dynamics for the mean inflaton and metric fields in the no-boundary and tunneling quantum states of the Universe. In the slow roll approximation (taking the form of the local Schwiger-DeWitt expansion) effective equations follow from the Euclidean effective action on the DeSitter gravitational instanton. Effective equations are applied in the model of the inflaton scalar field coupled to the GUT sector of matter fields and also having a strong nonminimal coupling to the curvature. The inverse of its big negative nonminimal coupling constant, serves as a small parameter of the slow roll expansion and semiclassical expansion of quantum gravitational effects. As a source of initial conditions we use a sharp probability peak recently obtained in the one-loop approximation for the no-boundary and tunneling quantum states and belonging (in virtue of a strong nonminimal coupling) to the GUT energy scale much below the Planck scale. The obtained equations in the tunneling quantum state predict a finite duration of inflationary stage compatible with the observational status of inflation theory, whereas for the no-boundary state they lead to the infinite inflationary epoch with a constant inflaton field.Comment: 23 pages, LaTe

    Open inflation from quantum cosmology with a strong nonminimal coupling

    Get PDF
    We propose the mechanism of quantum creation of the open Universe in the observable range of values of Ω\Omega. This mechanism is based on the no-boundary quantum state with the Hawking-Turok instanton applied to the model with a strong nonminimal coupling of the inflaton field. We develop the slow roll perturbation expansion for the instanton solution and obtain a nontrivial contribution to the classical instanton action. The interplay of this classical contribution with the loop effects due to quantum effective action generates the probability distribution peak with necessary parameters of the inflation stage without invoking any anthropic considerations. In contrast with a similar mechanism for closed models, existing only for the tunneling quantum state of the Universe, the observationally justified open inflation originates from the no-boundary cosmological wavefunction.Comment: 28 pages, LaTe

    Relativistic Gauge Conditions in Quantum Cosmology

    Get PDF
    This paper studies the quantization of the electromagnetic field on a flat Euclidean background with boundaries. One-loop scaling factors are evaluated for the one-boundary and two-boundary backgrounds. The mode-by-mode analysis of Faddeev-Popov quantum amplitudes is performed by using zeta-function regularization, and is compared with the space-time covariant evaluation of the same amplitudes. It is shown that a particular gauge condition exists for which the corresponding operator matrix acting on gauge modes is in diagonal form from the beginning. Moreover, various relativistic gauge conditions are studied in detail, to investigate the gauge invariance of the perturbative quantum theory.Comment: 26 pages, plain TeX, no figure

    Quantum origin of the early inflationary Universe

    Get PDF
    We give a detailed presentation of a recently proposed mechanism of generating the energy scale of inflation by loop effects in quantum cosmology. We discuss the quantum origin of the early inflationary Universe from the no-boundary and tunneling quantum states and present a universal effective action algorithm for the distribution function of chaotic inflationary cosmologies in both of these states. The energy scale of inflation is calculated by finding a sharp probability peak in this distribution function for a tunneling model driven by the inflaton field with large negative constant ξ\xi of non-minimal interaction. The sub-Planckian parameters of this peak (the mean value of the corresponding Hubble constant H105mPH\simeq 10^{-5}m_P, its quantum width ΔH/H105\Delta H/H\simeq 10^{-5} and the number of inflationary e-foldings N60N\geq 60) are found to be in good correspondence with the observational status of inflation theory, provided the coupling constants of the theory are constrained by a condition which is likely to be enforced by the (quasi) supersymmetric nature of the sub-Planckian particle physics model.Comment: 43 pages, LaTeX, figures not include

    On the 3-particle scattering continuum in quasi one dimensional integer spin Heisenberg magnets

    Full text link
    We analyse the three-particle scattering continuum in quasi one dimensional integer spin Heisenberg antiferromagnets within a low-energy effective field theory framework. We exactly determine the zero temperature dynamical structure factor in the O(3) nonlinear sigma model and in Tsvelik's Majorana fermion theory. We study the effects of interchain coupling in a Random Phase Approximation. We discuss the application of our results to recent neutron-scattering experiments on the Haldane-gap material CsNiCl3{\rm CsNiCl_3}.Comment: 8 pages of revtex, 5 figures, small changes, to appear in PR

    One loop renormalization of the four-dimensional theory for quantum dilaton gravity.

    Get PDF
    We study the one loop renormalization in the most general metric-dilaton theory with the second derivative terms only. The general theory can be divided into two classes, models of one are equivalent to conformally coupled with gravity scalar field and also to general relativity with cosmological term. The models of second class have one extra degree of freedom which corresponds to dilaton. We calculate the one loop divergences for the models of second class and find that the arbitrary functions of dilaton in the starting action can be fine-tuned in such a manner that all the higher derivative counterterms disappear on shell. The only structures in both classical action and counterterms, which survive on shell, are the potential (cosmological) ones. They can be removed by renormalization of the dilaton field which acquire the nontrivial anomalous dimension, that leads to the effective running of the cosmological constant. For some of the renormalizable solutions of the theory the observable low energy value of the cosmological constant is small as compared with the Newtonian constant. We also discuss another application of our result.Comment: 21 pages, latex, no figures
    corecore