57 research outputs found

    First measurement of Ωc0 production in pp collisions at s=13 TeV

    Get PDF
    The inclusive production of the charm–strange baryon 0 c is measured for the first time via its hadronic √ decay into −π+ at midrapidity (|y| <0.5) in proton–proton (pp) collisions at the centre-of-mass energy s =13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c. The pT dependence of the 0 c-baryon production relative to the prompt D0-meson and to the prompt 0 c-baryon production is compared to various models that take different hadronisation mechanisms into consideration. In the measured pT interval, the ratio of the pT-integrated cross sections of 0 c and prompt + c baryons multiplied by the −π+ branching ratio is found to be larger by a factor of about 20 with a significance of about 4σ when compared to e+e− collisions

    Elliptic flow of charged particles at midrapidity relative to the spectator plane in Pb–Pb and Xe–Xe collisions

    Get PDF
    Measurements of the elliptic flow coefficient relative to the collision plane defined by the spectator neutrons v2{ SP} in collisions of Pb ions at center-of-mass energy per nucleon–nucleon pair √ 2.76 TeV and Xe ions at √ sNN = sNN =5.44 TeV are reported. The results are presented for charged particles produced at midrapidity as a function of centrality and transverse momentum for the 5–70% and 0.2–6 GeV/c ranges, respectively. The ratio between v2{ SP} and the elliptic flow coefficient relative to the participant plane v2{4}, estimated using four-particle correlations, deviates by up to 20% from unity depending on centrality. This observation differs strongly from the magnitude of the corresponding eccentricity ratios predicted by the TRENTo and the elliptic power models of initial state fluctuations that are tuned to describe the participant plane anisotropies. The differences can be interpreted as a decorrelation of the neutron spectator plane and the reaction plane because of fragmentation of the remnants from the colliding nuclei, which points to an incompleteness of current models describing the initial state fluctuations. A significant transverse momentum dependence of the ratio v2{ SP}/v2{4} is observed in all but the most central collisions, which may help to understand whether momentum anisotropies at low and intermediate transverse momentum have a common origin in initial state f luctuations. The ratios of v2{ SP} and v2{4} to the corresponding initial state eccentricities for Xe–Xe and Pb–Pb collisions at similar initial entropy density show a difference of (7.0 ±0.9)%with an additional variation of +1.8% when including RHIC data in the TRENTo parameter extraction. These observations provide new experimental constraints for viscous effects in the hydrodynamic modeling of the expanding quark–gluon plasma produced in heavy-ion collisions at the LHC

    Advanced Magnetic Resonance Imaging in Leukodystrophies

    No full text

    The validity of biomarkers as surrogate endpoints in Alzheimer’s disease by means of the Quantitative Surrogate Validation Level of Evidence Scheme (QSVLES)

    No full text

    Anisotropic flow and flow fluctuations of identified hadrons in Pb–Pb collisions at sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV

    Get PDF
    International audienceThe first measurements of elliptic flow of π±^{±}, K±^{±}, p+p \textrm{p}+\overline{\textrm{p}} , KS0 {\textrm{K}}_{\textrm{S}}^0 , Λ+Λ \Lambda +\overline{\Lambda} , ϕ, Ξ+Ξ+ {\Xi}^{-}+{\overline{\Xi}}^{+} , and Ω+Ω+ {\varOmega}^{-}+{\overline{\varOmega}}^{+} using multiparticle cumulants in Pb–Pb collisions at sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV are resented. Results obtained with two- (v2_{2}{2}) and four-particle cumulants (v2_{2}{4}) are shown as a function of transverse momentum, pT_{T}, for various collision centrality intervals. Combining the data for both v2_{2}{2} and v2_{2}{4} also allows us to report the first measurements of the mean elliptic flow, elliptic flow fluctuations, and relative elliptic flow fluctuations for various hadron species. These observables probe the event-by-event eccentricity fluctuations in the initial state and the contributions from the dynamic evolution of the expanding quark–gluon plasma. The characteristic features observed in previous pT_{T}-differential anisotropic flow measurements for identified hadrons with two-particle correlations, namely the mass ordering at low pT_{T} and the approximate scaling with the number of constituent quarks at intermediate pT_{T}, are similarly present in the four-particle correlations and the combinations of v2_{2}{2} and v2_{2}{4}. In addition, a particle species dependence of flow fluctuations is observed that could indicate a significant contribution from final state hadronic interactions. The comparison between experimental measurements and CoLBT model calculations, which combine the various physics processes of hydrodynamics, quark coalescence, and jet fragmentation, illustrates their importance over a wide pT_{T} range.[graphic not available: see fulltext

    Measurement of ψ\psi(2S) production as a function of charged-particle pseudorapidity density in pp collisions at s\sqrt{s} = 13 TeV and p-Pb collisions at sNN\sqrt{s_{\rm NN}} = 8.16 TeV with ALICE at the LHC

    No full text
    International audienceProduction of inclusive charmonia in pp collisions at center-of-mass energy of s \sqrt{s} = 13 TeV and p–Pb collisions at center-of-mass energy per nucleon pair of sNN \sqrt{s_{\textrm{NN}}} = 8.16 TeV is studied as a function of charged-particle pseudorapidity density with ALICE. Ground and excited charmonium states (J/ψ, ψ(2S)) are measured from their dimuon decays in the interval of rapidity in the center-of-mass frame 2.5 < ycms_{cms}< 4.0 for pp collisions, and 2.03 < ycms_{cms}< 3.53 and −4.46 < ycms_{cms}< −2.96 for p–Pb collisions. The charged-particle pseudorapidity density is measured around midrapidity (|η| < 1.0). In pp collisions, the measured charged-particle multiplicity extends to about six times the average value, while in p-Pb collisions at forward (backward) rapidity a multiplicity corresponding to about three (four) times the average is reached. The ψ(2S) yield increases with the charged-particle pseudorapidity density. The ratio of ψ(2S) over J/ψ yield does not show a significant multiplicity dependence in either colliding system, suggesting a similar behavior of J/ψ and ψ(2S) yields with respect to charged-particle pseudorapidity density. Results for the ψ(2S) yield and its ratio with respect to J/ψ agree with available model calculations.[graphic not available: see fulltext

    Measurement of inclusive and leading subjet fragmentation in pp and Pb–Pb collisions at sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV

    No full text
    International audienceThis article presents new measurements of the fragmentation properties of jets in both proton–proton (pp) and heavy-ion collisions with the ALICE experiment at the Large Hadron Collider (LHC). We report distributions of the fraction zr_{r} of transverse momentum carried by subjets of radius r within jets of radius R. Charged-particle jets are reconstructed at midrapidity using the anti-kT_{T} algorithm with jet radius R = 0.4, and subjets are reconstructed by reclustering the jet constituents using the anti-kT_{T} algorithm with radii r = 0.1 and r = 0.2. In proton–proton collisions, we measure both the inclusive and leading subjet distributions. We compare these measurements to perturbative calculations at next-to-leading logarithmic accuracy, which suggest a large impact of threshold resummation and hadronization effects on the zr_{r} distribution. In heavy-ion collisions, we measure the leading subjet distributions, which allow access to a region of harder jet frag- mentation than has been probed by previous measurements of jet quenching via hadron fragmentation distributions. The zr_{r} distributions enable extraction of the parton-to-subjet fragmentation function and allow for tests of the universality of jet fragmentation functions in the quark–gluon plasma (QGP). We find no significant modification of zr_{r} distributions in Pb–Pb compared to pp collisions. However, the distributions are also consistent with a hardening trend for zr_{r}< 0.95, as predicted by several jet quenching models. As zr_{r} → 1 our results indicate that any such hardening effects cease, exposing qualitatively new possibilities to disentangle competing jet quenching mechanisms. By comparing our results to theoretical calculations based on an independent extraction of the parton-to-jet fragmentation function, we find consistency with the universality of jet fragmentation and no indication of factorization breaking in the QGP.[graphic not available: see fulltext

    Constraining the KN{\overline{\textrm{K}}}{\textrm{N}} coupled channel dynamics using femtoscopic correlations at the LHC

    No full text
    International audienceThe interaction of K\textrm{K}^{-}with protons is characterised by the presence of several coupled channels, systems like K0{\overline{\textrm{K}}}^0n and \uppi \Sigma with a similar mass and the same quantum numbers as the K\textrm{K}^{-}p state. The strengths of these couplings to the K\textrm{K}^{-}p system are of crucial importance for the understanding of the nature of the Λ(1405)\Lambda (1405) resonance and of the attractive K\textrm{K}^{-}p strong interaction. In this article, we present measurements of the K\textrm{K}^{-}p correlation functions in relative momentum space obtained in pp collisions at s = 13\sqrt{s}~=~13 Te, in p–Pb collisions at sNN = 5.02\sqrt{s_{\textrm{NN}}}~=~5.02 Te, and (semi)peripheral Pb–Pb collisions at sNN = 5.02\sqrt{s_{\textrm{NN}}}~=~5.02 Te. The emitting source size, composed of a core radius anchored to the K+\textrm{K}^{+}p correlation and of a resonance halo specific to each particle pair, varies between 1 and 2 fm in these collision systems. The strength and the effects of the K0{\overline{\textrm{K}}}^0n and \uppi \Sigma inelastic channels on the measured K\textrm{K}^{-}p correlation function are investigated in the different colliding systems by comparing the data with state-of-the-art models of chiral potentials. A novel approach to determine the conversion weights ω\omega , necessary to quantify the amount of produced inelastic channels in the correlation function, is presented. In this method, particle yields are estimated from thermal model predictions, and their kinematic distribution from blast-wave fits to measured data. The comparison of chiral potentials to the measured K\textrm{K}^{-}p interaction indicates that, while the \uppi \Sigma K\textrm{K}^{-}p dynamics is well reproduced by the model, the coupling to the K0{\overline{\textrm{K}}}^0n channel in the model is currently underestimated

    W±^\pm-boson production in p-Pb collisions at sNN=8.16\sqrt{s_{NN}} = 8.16 TeV and PbPb collisions at sNN=5.02\sqrt{s_{NN}} = 5.02 TeV

    No full text
    International audienceThe production of the W±^{±} bosons measured in p–Pb collisions at a centre-of-mass energy per nucleon–nucleon collision sNN \sqrt{s_{\textrm{NN}}} = 8.16 TeV and Pb–Pb collisions at sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV with ALICE at the LHC is presented. The W±^{±} bosons are measured via their muonic decay channel, with the muon reconstructed in the pseudorapidity region −4 10 GeV/c. While in Pb–Pb collisions the measurements are performed in the forward (2.5 <ycmsμ {y}_{\textrm{cms}}^{\mu } < 4) rapidity region, in p–Pb collisions, where the centre-of-mass frame is boosted with respect to the laboratory frame, the measurements are performed in the backward (−4.46 <ycmsμ {y}_{\textrm{cms}}^{\mu } < −2.96) and forward (2.03 <ycmsμ {y}_{\textrm{cms}}^{\mu } < 3.53) rapidity regions. The W^{−} and W+^{+} production cross sections, lepton-charge asymmetry, and nuclear modification factors are evaluated as a function of the muon rapidity. In order to study the production as a function of the p–Pb collision centrality, the production cross sections of the W^{−} and W+^{+} bosons are combined and normalised to the average number of binary nucleon–nucleon collision 〈Ncoll_{coll}〉. In Pb–Pb collisions, the same measurements are presented as a function of the collision centrality. Study of the binary scaling of the W±^{±}-boson cross sections in p–Pb and Pb–Pb collisions is also reported. The results are compared with perturbative QCD calculations, with and without nuclear modifications of the Parton Distribution Functions (PDFs), as well as with available data at the LHC. Significant deviations from the theory expectations are found in the two collision systems, indicating that the measurements can provide additional constraints for the determination of nuclear PDFs and in particular of the light-quark distributions.[graphic not available: see fulltext
    corecore