21 research outputs found

    Transitions of cardio-metabolic risk factors in the Americas between 1980 and 2014

    Get PDF
    Describing the prevalence and trends of cardiometabolic risk factors that are associated with non-communicable diseases (NCDs) is crucial for monitoring progress, planning prevention, and providing evidence to support policy efforts. We aimed to analyse the transition in body-mass index (BMI), obesity, blood pressure, raised blood pressure, and diabetes in the Americas, between 1980 and 2014

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p

    A century of trends in adult human height

    No full text
    Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5-22.7) and 16.5 cm (13.3-19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8-144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol�which is a marker of cardiovascular risk�changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95 credible interval 3.7 million�4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world. © 2020, The Author(s), under exclusive licence to Springer Nature Limited

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)

    Retinoid antagonism of estrogen-responsive transforming growth factor alpha and pS2 gene expression in breast carcinoma cells.

    No full text
    Exposure of MCF-7 breast carcinoma cells to estradiol results in an increase in transforming growth factor alpha (TGF-alpha) synthesis and secretion. Since TGF-alpha is a potent inducer of proliferation in MCF-7 cells, the increase in TGF-alpha production by estradiol is thought to play an important role in the estrogen stimulation of growth of these cells. Retinoic acid inhibits the proliferation of MCF-7 cells and antagonizes the estrogen stimulation of growth. Addition of retinoic acid resulted in a greater than 70% inhibition of estradiol-induced TGF-alpha synthesis and secretion in MCF-7 cells. The increase in TGF-alpha mRNA expression by estradiol was also inhibited by exposure of the cells to retinoic acid. Pretreatment of the cells with retinoic acid for 24 or 72 h caused more than 50 and 90% inhibition, respectively, of the estradiol-enhanced expression of TGF-alpha mRNA. Expression of pS2 mRNA in MCF-7 cells was stimulated approximately 8-fold by estradiol. Retinoic acid treatment suppressed by greater than 80% both the basal and estradiol-induced pS2 mRNA expression. Retinoic acid modulation of the estrogen receptor gene mRNA was not responsible for the retinoic acid inhibition of the stimulation of pS2 and TGF-alpha gene expression by estradiol, since estrogen receptor gene expression was increased rather than decreased in the presence of retinoic acid. The nuclear retinoic acid receptors alpha and gamma mRNA were expressed in MCF-7 cells and its retinoic acid-resistant derivative RROI. Addition of estradiol to MCF-7 cells resulted in a decreased expression of retinoic acid receptor gamma mRNA; this reduction is prevented by the presence of retinoic acid. These results indicate that retinoic acid can inhibit estradiol-induced TGF-alpha and pS2 mRNA expression in MCF-7 cells. The suppression of TGF-alpha expression may represent one possible mechanism by which retinoic acid antagonizes the stimulation of MCF-7 proliferation by estradiol

    Regulation of type I and type II transglutaminase in normal human bronchial epithelial and lung carcinoma cells.

    No full text
    In cultured, undifferentiated normal human bronchial epithelial (HBE) cells, transglutaminase activity was localized predominantly in the cytosolic fraction of cell lysates. Upon squamous differentiation, this cytosolic activity declined and was replaced by a 40-fold increase in the activity of particulate (membrane-associated) transglutaminase. Immunoblot analysis demonstrated that the cytosolic transglutaminase was Type II (tissue) transglutaminase and that squamous differentiation shifted gene expression to the Type I (epidermal) transglutaminase. Retinoic acid, an inhibitor of squamous cell differentiation, suppressed the increase in Type I transglutaminase. The decrease in Type II transglutaminase activity was unaffected by retinoic acid. Transforming growth factor-beta 1 (TGF-beta 1) enhanced Type II transglutaminase activity about 10-fold in the undifferentiated cells but did not increase Type I transglutaminase or cholesterol sulfate, two early markers of squamous differentiation. TGF-beta 2 was equivalent to TGF-beta 1 in inducing Type II transglutaminase and in inhibiting the growth of HBE cells. The differentiation-related and TGF-beta-induced changes in transglutaminase activity were reflected in the level of transglutaminase Type I and Type II protein and mRNA. Expression of transglutaminases in lung carcinoma cell lines was variable. No correlation was observed between the expression of Type I transglutaminase and the classification of the cells as squamous cell carcinoma. Several lung carcinoma cell lines exhibited high levels of Type II transglutaminase activity that were increased several-fold by TGF-beta 1 treatment. Retinoic acid was ineffective in altering transglutaminase expression in most cell lines but induced Type II transglutaminase in a time- and dose-dependent manner in NCI-HUT-460 cells

    Homeobox 1.3 expression: induction by retinoic acid in human bronchial fibroblasts.

    No full text
    Homeobox (Hox) genes code for transcriptional factors and are expressed during many developmental and differentiative processes. In this study, we describe the induction of Hox 1.3 expression by retinoic acid (RA) in human bronchial fibroblasts (HBF) derived from explants of bronchial tissue. Using Northern blot analysis, we show that RA induces Hox 1.3 mRNA 3- to 10-fold over steady-state levels within 2 h after addition of RA to HBF culture medium. The induction was dose dependent, reaching a half-maximal level at approximately 10(-8) M RA. This induction was not seen in human dermal fibroblasts. Immunofluorescent staining of HBF showed a corresponding increase in Hox 1.3 protein levels in the nuclei. The increase in Hox 1.3 transcript levels in HBF was not abolished by cycloheximide treatment, suggesting that synthesis of a protein intermediate is not required for the induction. RA did not significantly alter the rate of degradation of the Hox 1.3 mRNA as determined by actinomycin D treatment, suggesting that the increase in Hox 1.3 mRNA may be due to an increase in the rate of transcription. This study provides further evidence that bronchial fibroblasts are targets for RA. Although downstream target genes for Hox 1.3 have not yet been identified, it is likely that the induction of Hox 1.3 by RA is an early step in a cascade of RA-induced changes in gene expression in bronchial fibroblasts

    Increased cholesterol sulfate and cholesterol sulfontransferase activity in relation to the multi-step process of differentiation in human epidermal keratinocites

    No full text
    In this study the synthesis of cholesterol sulfate is examined in relation to the process of squamous differentiation in normal human epidermal keratinocytes (NHEK) in culture. During the exponential growth phase, NHEK cells exhibit a relatively high colony-forming efficiency and appear undifferentiated on the basis of their morphology and expression of biochemical characteristics. At confluence, the cells undergo terminal differentiation that is characterized by the commitment to terminal cell division (reduction in colony-forming ability) and expression of the differentiated phenotype. An accumulation of cholesterol sulfate accompanies this program of differentiation. This accumulation of cholesterol sulfate parallels the increase in transglutaminase type I activity and the competence to form cross-linked envelopes, whereas it precedes the "spontaneous" formation of cross-linked envelopes. Increased cholesterol sulfotransferase activity appears to account for the increase in cholesterol sulfate. The cholesterol sulfate accumulation, as well as the increase in cholesterol sulfotransferase and transglutaminase activity, are inhibited by retinoids. However, the presence of retinoids does not prevent NHEK cells from undergoing terminal cell division at confluence. Two NHEK cell lines expressing SV40-large T antigen also undergo terminal differentiation at confluence and start to accumulate cholesterol sulfate. Two other, differentiation-defective cell lines do not exhibit an increase in cholesterol sulfate at confluence. These results show that epidermal keratinocytes in culture, like cells in the epidermis, accumulate cholesterol sulfate when undergoing squamous differentiation. This program appears to consist of a retinoid-insensitive step (commitment to terminal cell division) and a retinoid-sensitive step (expression of the squamous differentiated phenotype)

    Expression of nuclear retinoic acid receptors in normal tracheobronchial cells and in lung carcinoma cells.

    No full text
    Retinoids are important regulators of the growth and differentiation of tracheobronchial epithelial cells. To determine the mechanism of action of retinoids in these cells, we began to examine the expression of nuclear retinoic acid receptors (RARs) in normal human and rabbit tracheobronchial epithelial (HBE and RbTE, respectively) cells and in several lung carcinoma cell lines. A specific nuclear RAR-binding activity with a molecular weight of 50,000 was identified in these cells. A correlation was found between the binding of several retinoids to this RAR and their ability to inhibit transglutaminase Type I activity. Normal HBE and RbTE cells contained two RARα mRNA transcripts, 2.6 and 3.5 kb in size, and one 3.1 kb RARγ transcript. RARβ transcripts were undetectable in HBE cells. RAR expression was unchanged during squamous differentiation. Treatment of HBE and RbTE cells with 100 nM retinoic acid increased RARβ mRNA expression but did not change the levels of RARα and RARγ. In contrast, retinoic acid suppressed in these cells the level of involucrin, transglutaminase Type I, and SQ37 mRNA. In comparison with normal HBE cells, certain lung carcinoma cell lines appear to have an altered expression of RARβ and RARγ. Human bronchial fibroblasts (HBF) expressed RARα and RARγ transcripts of the same size as HBE cells. HBF cells contain low levels of a 2.9- and 3.3-kb RARβ mRNA. Treatment of HBF cells with retinoic acid increased the level of RARβ mRNA in a time dependent manner; the maximal induction was about 15-fold. On the basis of these findings we hypothesize that RARs are involved in the suppression of squamous differentiation in tracheobronchial epithelial cells and that lung fibroblasts are target cells for retinoids
    corecore