8 research outputs found

    A liquid helium target system for a measurement of parity violation in neutron spin rotation

    Full text link
    A liquid helium target system was designed and built to perform a precision measurement of the parity-violating neutron spin rotation in helium due to the nucleon-nucleon weak interaction. The measurement employed a beam of low energy neutrons that passed through a crossed neutron polarizer--analyzer pair with the liquid helium target system located between them. Changes between the target states generated differences in the beam transmission through the polarizer--analyzer pair. The amount of parity-violating spin rotation was determined from the measured beam transmission asymmetries. The expected parity-violating spin rotation of order 10−610^{-6} rad placed severe constraints on the target design. In particular, isolation of the parity-odd component of the spin rotation from a much larger background rotation caused by magnetic fields required that a nonmagnetic cryostat and target system be supported inside the magnetic shielding, while allowing nonmagnetic motion of liquid helium between separated target chambers. This paper provides a detailed description of the design, function, and performance of the liquid helium target system.Comment: V2: 29 pages, 14 figues, submitted to Nucl. Instrum. Meth. B. Revised to address reviewer comment

    Search for Three-Nucleon Force Effects in Analyzing Powers for p→d Elastic Scattering

    Get PDF
    A series of measurements have been performed at KVI to obtain the vector analyzing power Ay of the 2H(p→,pd) reaction as a function of incident beam energy at energies of 120, 135, 150, and 170 MeV. For all these measurements, a range of ϑc.m. from 30° to 170° has been covered. The purpose of these investigations is to observe possible spin-dependent effects beyond two-nucleon forces. When compared to the predictions of Faddeev calculations, based on two-nucleon forces only, significant deviations are observed at all energies and at center-of-mass angles between 70° and 130°. The addition of present-day three-nucleon forces does not improve the description of the data, demonstrating the still insufficient understanding of the properties of three-nucleon systems

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    Coherent Photoproduction of pi^+ from 3^He

    Full text link
    We have measured the differential cross section for the Îł\gamma3^3He→π+t\rightarrow \pi^+ t reaction. This reaction was studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons produced with the Hall-B bremsstrahlung tagging system in the energy range from 0.50 to 1.55 GeV were incident on a cryogenic liquid 3^3He target. The differential cross sections for the Îł\gamma3^3He→π+t\rightarrow \pi^+ t reaction were measured as a function of photon-beam energy and pion-scattering angle. Theoretical predictions to date cannot explain the large cross sections except at backward angles, showing that additional components must be added to the model.Comment: 11 pages, 16 figure

    Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive π0\pi^0 production

    Get PDF
    We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sinâĄÏ•h\sin \phi_h amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle ϕh\phi_h of the produced neutral pion. The dependence of this amplitude on Bjorken xx and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.Comment: to be submitted PL

    Spin observables in the three-body break-up process near the quasi-free limit in deuteron-deuteron scattering

    Get PDF
    <p>We have studied spin observables in the three-body break-up reaction in deuteron-deuteron scattering in the phase-space regime that corresponds to the quasi-free deuteron-proton scattering process with the neutron as spectator. The data are compared to measurements of the elastic deuteron-proton scattering process and state-of-the-art Faddeev calculations. The results for iT(11) and T-22 for the quasi-free scattering data agree very well with previously published elastic-scattering data. A significant discrepancy is found for T-20, which could point to a break-down of the quasi-free assumption. (C) 2013 Elsevier B.V. All rights reserved.</p>

    The G0 experiment: Apparatus for parity-violating electron scattering measurements at forward and backward angles

    No full text
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part-per-million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cherenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed. © 2011 Elsevier B.V. All rights reserved.Articl
    corecore