438 research outputs found

    Double heavy meson production through double parton scattering in hadronic collisions

    Get PDF
    It is shown that the contribution from double parton scattering to the inclusive double heavy meson yield is quite comparable with the usually considered mechanism of their production at the LHC energy. For some pairs of heavy flavored quarks in the final state the double parton scattering will be a dominant mode of their production.Comment: 5 pages, version accepted in Phys. Lett. B, discussion extended, references adde

    Selberg Supertrace Formula for Super Riemann Surfaces III: Bordered Super Riemann Surfaces

    Full text link
    This paper is the third in a sequel to develop a super-analogue of the classical Selberg trace formula, the Selberg supertrace formula. It deals with bordered super Riemann surfaces. The theory of bordered super Riemann surfaces is outlined, and the corresponding Selberg supertrace formula is developed. The analytic properties of the Selberg super zeta-functions on bordered super Riemann surfaces are discussed, and super-determinants of Dirac-Laplace operators on bordered super Riemann surfaces are calculated in terms of Selberg super zeta-functions.Comment: 43 pages, amste

    Mean-field Phase Diagram of Two-Dimensional Electrons with Disorder in a Weak Magnetic Field

    Get PDF
    We study two-dimensional interacting electrons in a weak perpendicular magnetic field with the filling factor ν1\nu \gg 1 and in the presence of a quenched disorder. In the framework of the Hartree-Fock approximation, we obtain the mean-field phase diagram for the partially filled highest Landau level. We find that the CDW state can exist if the Landau level broadening 1/2τ1/2\tau does not exceed the critical value 1/2τc=0.038ωH1/2\tau_{c}=0.038\omega_{H}. Our analysis of weak crystallization corrections to the mean-field results shows that these corrections are of the order of (1/ν)2/31(1/\nu)^{2/3}\ll 1 and therefore can be neglected

    Emergence of quasi-metallic state in disordered 2D electron gas due to strong interactions

    Full text link
    The interrelation between disorder and interactions in two dimensional electron liquid is studied beyond weak coupling perturbation theory. Strong repulsion significantly reduces the electronic density of states on the Fermi level. This makes the electron liquid more rigid and strongly suppresses elastic scattering off impurities. As a result the weak localization, although ultimately present at zero temperature and infinite sample size, is unobservable at experimentally accessible temperature at high enough densities. Therefore practically there exists a well defined metallic state. We study diffusion of electrons in this state and find that the diffusion pole is significantly modified due to "mixture" with static photons similar to the Anderson - Higgs mechanism in superconductivity. As a result several effects stemming from the long range nature of diffusion like the Aronov - Altshuler logarithmic corrections to conductivity are less pronounced.Comment: to appear in Phys. Rev.

    The Crystallography of Color Superconductivity

    Get PDF
    We develop the Ginzburg-Landau approach to comparing different possible crystal structures for the crystalline color superconducting phase of QCD, the QCD incarnation of the Larkin-Ovchinnikov-Fulde-Ferrell phase. In this phase, quarks of different flavor with differing Fermi momenta form Cooper pairs with nonzero total momentum, yielding a condensate that varies in space like a sum of plane waves. We work at zero temperature, as is relevant for compact star physics. The Ginzburg-Landau approach predicts a strong first-order phase transition (as a function of the chemical potential difference between quarks) and for this reason is not under quantitative control. Nevertheless, by organizing the comparison between different possible arrangements of plane waves (i.e. different crystal structures) it provides considerable qualitative insight into what makes a crystal structure favorable. Together, the qualitative insights and the quantitative, but not controlled, calculations make a compelling case that the favored pairing pattern yields a condensate which is a sum of eight plane waves forming a face-centered cubic structure. They also predict that the phase is quite robust, with gaps comparable in magnitude to the BCS gap that would form if the Fermi momenta were degenerate. These predictions may be tested in ultracold gases made of fermionic atoms. In a QCD context, our results lay the foundation for a calculation of vortex pinning in a crystalline color superconductor, and thus for the analysis of pulsar glitches that may originate within the core of a compact star.Comment: 41 pages, 13 figures, 1 tabl

    Super universality of the quantum Hall effect and the "large NN picture" of the ϑ\vartheta angle

    Get PDF
    It is shown that the "massless chiral edge excitations" are an integral and universal aspect of the low energy dynamics of the ϑ\vartheta vacuum that has historically gone unnoticed. Within the SU(M+N)/S(U(M)×U(N))SU(M+N)/S(U(M) \times U(N)) non-linear sigma model we introduce an effective theory of "edge excitations" that fundamentally explains the quantum Hall effect. In sharp contrast to the common beliefs in the field our results indicate that this macroscopic quantization phenomenon is, in fact, a {\em super universal} strong coupling feature of the ϑ\vartheta angle with the replica limit M=N=0M=N=0 only playing a role of secondary importance. To demonstrate super universality we revisit the large NN expansion of the CPN1CP^{N-1} model. We obtain, for the first time, explicit scaling results for the quantum Hall effect including quantum criticality of the quantum Hall plateau transition. Consequently a scaling diagram is obtained describing the cross-over between the weak coupling "instanton phase" and the strong coupling "quantum Hall phase" of the large NN theory. Our results are in accordance with the "instanton picture" of the ϑ\vartheta angle but fundamentally invalidate all the ideas, expectations and conjectures that are based on the historical "large NN picture."Comment: 40 pages, 9 figure
    corecore