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Mean-field phase diagram of two-dimensional electrons with disorder in a weak magnetic field
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We study two-dimensional interacting electrons in a weak perpendicular magnetic field with the filling factor
v>1 and in the presence of a quenched disorder. In the framework of the Hartree-Fock approximation, we
obtain the mean-field phase diagram for the partially filled highest Landau level. We find that the charge-
density-wave(CDW) state can exist if the Landau level broadeningrlddes not exceed the critical value
1/27.=4Ty/m, whereT, is the critical temperature of the CDW formation in the clean case. Our analysis of
weak crystallization corrections to the mean-field results shows that these corrections are of the order of
(1/v)?P<1 and therefore can be neglected.

DOI: 10.1103/PhysRevB.68.155328 PACS nuntder72.10—-d

. INTRODUCTION the mean-field solutiof?**The effects of a quenched disor-
der on the unidirectional CDW statstripe phasgwere in-

A two-dimensional electron gg@DEG) in a perpendicu- vestigated in the framework of the phenomenological elas-
lar magnetic field was a subject of intensive studies, bottiicity theory* and a rich variety of different regimes, which
theoretical and experimental, for several decades. The behagepend on the strength of disorder, were found. However, to
ior of the system in a strong magnetic field where only theidentify the phenomenological parameters of the theory, a
lowest Landau level is occupied has been investigated iguccessive microscopic theory should be developed.
great details. Several attempfs were made in order to in- At present, a thorough microscopic analysis of the effects
corporate the case with larger filling factors>1 into the of disorder on the mean-field transition from the liquid state

theory. Usually in these approaches, the ratio of the charad® the CDW one, as well as on the phase diagram of the
teristic Coulomb energyat distances of the order of the mean-field CDW states, is absent. The main objective of the
magnetic lengthto the cyclotron energy has been assumedresent paper is to investigate _these effects on the existence
to be small. However, in a weak magnetic field this is not thedf the mean-field CDW states in 2DEG in a weak perpen-
case, and the characteristic Coulomb energy exceeds the c§icular magnetic fielH (filling factor »>1). For the con-
clotron energy. An attempt to investigate the situation withSidered case of a large number of the occupied Landau lev-
|arge Coulomb energy was made in Ref. 4. E|S, the mean-field analySiS is Iegltlmate because the
The progress in understanding the clean 2DEG in a weafluctuations of the order parameter are strongly suppreSsed.
magnetic field was achieved by Aleiner and Glazmaihey ~ On the other hand, the mean-field approach cannot be ap-
have derived the low-energy effective theory on the partiallyPlied to the critical region in the direct vicinity of the phase
filled highest Landau level by using the small paramete,transition.This region is, however, small and does not lead to
1/v<1. By treating the effective interaction within the any significant uncertainty in our results for critical tempera-
Hartree-Fock approximation, Koulakov, Fogler, andtures of the transitions. _
Shklovskif predicted a unidirectional charge-density-wave Ve assume the presence in the system of a weak
(CDW) state(stripe phasgfor the half filled highest Landau quenched disorder, i.e., the elastic collisions time satisfies the
level at zero temperature and in the absence of disordegondition 7> wy*, wherew,=eH/m is the cyclotron fre-
Moessner and Chalkérextended the ideas of Fukuyama, quency,e the electron charge, and the effective electron
Platzmann, and Andersbro the case of a partially filled mass(we use the units with =1, c=1, andkg=1). Under
highest Landau level and showed the existence of the meaithis condition, the Landau-level broadening4,/#hich is of
field CDW state on the half-filled Landau level below somethe order ofJwy 7/ 79, is much less than the spacing,
temperaturel . between them. This case can be realized in high mobility
Recently, the existence of compressible states near hasamples which were used for experimental studies of the
filling with anisotropic transport properties was demon-anisotropic magnetotranspdnt?*°Keeping in mind that the
strated experimentally for high Landau levéf This stimu-  relation To~1/7 usually holds, one expects a much more
lates an extensive study of the clean 2DEG in a weak magpronounced influence of the quenched disorder on the prop-
netic field and pinning of stripes by disordér. erties of electrons on the partially filled highest Landau level
In the clean case, the properties of the CDW states can beven for a small level broadening T2 w .
described on the basis of the low-energy effective theory for One of the main results of our paper is that at zero tem-
smooth “elastic” deformations! Recently, attempts were perature the mean-field CDW state is destroyed when the
made to derive such a theory microscopically starting fromLandau-level broadening exceeds the critical valuerld/2
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=4T,/m. At nonzero temperatures the quenched disorder T _ _
leads to the decrease of the temperature of the CDW insta{= — N_J DLy, lﬂ]f D[ Vyis] PL Vaislexp( SL#, ¢, Vais])
bility as compared to the clean case. The physical reason is ' (1)
that the scattering on impurities breaks the CDW correla-
tions, and therefore results in the destruction of the coherehere the actior] ¢, ¢, Vgis] in the Matsubara representa-
CDW state. This is somewhat similar to the suppression ofion has the form
the critical temperature in conventional superconductors by
magnetic impuritie® or in anisotropic superconductors by S (R
nonmagnetic impurities’ S=|2 [‘/’gn(r)[iwn+M_H0_vdis(r)]'/’Zn(r)
The paper is organized as follows. In Sec. Il we introduce fen
the formalism that allows us to evaluate the free energy of T
the CDW state in the presence of disorder. In Sec. Il we 2 wEV .
investigate the instability of the liquid state towards the for- m
mation of the CDW state, and present the mean-field phase . ,
diagrams at the half filling and arbitrary temperature, and at w“’m+ V|(r ))' &
zero temperature and arbitrary filling. The weak crystalliza-
tion corrections to the mean-field solution are presented iHere ¢gn(r) and lp_gn(r) are the annihilation and creation
Sec. IV. Section V contains the comparison of the theorysnerators of an electron on tihéh Landau levelT the tem-
W!th the recent e>_<per|mental and numerical results. We enﬂerature,,u the chemical potentialw,==T(2n+1) the
with conclusions in Sec. V. Matsubara fermionic frequency, ang=27Tn the Bosonic
one. The free Hamiltoniafi, for 2D electrons with mass
in the perpendicular magnetic field = e,,d,Ap IS Ho=
(—iV—eA)ZI(Zm). The screened electron-electron interac-
We consider two-dimensional interacting electrons in thetion Ug(r) on theNth Landau level takes into account the
presence of a weak quenched disorder and a weak perpegffects of interactions with electrons on the other levels, and
dicular magnetic field. The parameter that characterizes th@as the forn{see Ref. 5 for the clean case and Ref. 18 for the
strength of the Coulomb interaction is=\2e%evp with ~ Weakly disordered cage
v being the Fermi velocity and the dielectric constant of a

WP, (DU(rr)gs (1)

Il. FREE ENERGY OF THE CDW STATES

media. We assume that the Coulomb interaction between the _ 27e? 1
electrons is weakr <1, and the magnetic field obeys the Uo(a)= &q = ) 3
conditionNr>1, whereN=[ /2] is the integer part of/2. 1+ 9o =55 T)[l—Jo(ch)]

B H

In this case it is possible to construct an effective-field theory

for the electrons on the highest partially filled Landau |evelwhereRC=IH\/; is the cyclotron radius on thith Landau
by integrating out all other degrees of freed%?ﬁ.vye also  |evel and Jy(x) the Bessel function of the first kind. The
assume that the electrons on the partially filled highest Lanfange of the screened electron-electron interadt®ris de-

dau level are spin polarized. This assumption is based on thg;mined by the Bohr radiusg . We also assume the Gauss-
calculationd*® that show the existence of fractional states, .y distribution for the random potentisdy;(r)
IS

composite fermions, and skyrmions only on the lowest and
the first excited Landau levels, as well as on the experimental 1 1
observations. N _Z |2

In order to study the transition from the liquid state to the AVais(r)] \/w_geXp( gfrvd's(r)) ’ @
CDW one we employ the Landau expansion of the free en-
ergy in powers of the CDW order paramem(qj), where Where g=-1/7T.qu, P is the thermodynamical density of
the vectorgy; that characterize the CDW state have the samétates. Th|§ distribution colrresponds to a short-range random
length’ g;=Q. We perform the expansion up to the fourth potential with the correlation length smaller than the mag-
order in the CDW order parameter under the assumptiofi€tic field lengthly, . In order to average over the disorder
Nr2>1. In this case the Hartree-Fock approximation is wellwe introduceN, replicated copies of the system labeled by

justified because the corrections are small in the parametdfe replica indicesr=1, ... N,.
agl/ly= 1/Nr§<1, whereag=¢/mé is the Bohr radius and
ly=1/{Vmwy the magnetic length. B. Hartree-Fock decoupling and the average over disorder

The CDW ground state is characterized by the order pa-
. rameterA(q) that is related to the electron density
A. Formalism

The thermodynamical potential of the spin-polarized (p(@))=L,Lyn Fn(aq)A(Q). (5)
2DEG projected on th&lth Landau level in the presence
of the random potentiaVy;s(r) and the magnetic field is HereL,L, is the area of the 2DEG},_=1/27-rIE| the number
given by of states on one Landau level, and the form faéiQ(q) is

155328-2



MEAN-FIELD PHASE DIAGRAM OF TWO-DIMENSIONA. . . . PHYSICAL REVIEW B 68, 155328 (2003

9’5 9°5 NQy 1 .
FN(q>=LN(—2 exp — 5, (6) === 55 ) WM | W@t p=Hot
where Ly(Xx) is the Laguerre polynomial. For the cabke +iQ)¢(F) (15)
>1, one can use the following asymptotic expression for the ’
form factor (6): wherew is the frequency matrixd) *2= w,8,md*~.
R? o .
Fn(a)=T0(qRy), qR.< |_2°: . (7) C. Saddle point in the Q field
H

The Q matrix field can be naturally split into the trans-
After the Hartree-Fock decouplifjof the interaction term VverseV and the longitudinaP components as followsQ
in the action(2) we obtain =V~ IPV. The longitudinal componenP has the block-
diagonal structure in the Matsubara spaB&Z=@®(nm),

N, Q, : _— where®(x) is the Heaviside step function, and corresponds
S=- T r; Yo (N0t p—Ho—Vyis(r) to massive modes. The transverse compoieist a unitary
" rotation and describes massleédgfusive) modes(see Refs.
+N )]y (1), (8) 24 and 25 for details

This decomposition of the variabl® into P and V is
N (LyL)2 motivated by the saddle-point structure of the actid® at
QAz%f U(A(Q)A(—Qq), (9)  zero temperatures,—0) and in the absence of the potential
q N\(r). The corresponding saddle-point solution has the form

where the potential (r) results from the perturbation of the Qsp=V " 'PsyV, where the matrisPs is
uniform electron density by the charge-density wave, and is

connected with the CDW order parameter as follows: (Psp)fim=Pepdnmd™® (16)
\Q) = LXLyU(q)F,Ql(q)A(q), (100  with ng obeying the equation
and U(q)=—n_Uyxe(q) with the Hartree-Fock potential proP2p=iG8(r,r). (17)

Une(a) given by
This equation is equivalent to the self-consistent Born ap-

proximation equatioR® The Green functiorGj(r,r') is de-

efiqpla 5
Uo(P)FN(P). (1D termined as

UHF<q>=uo<q>F§<q>—fp

The averaging over the random potentig)i;(r) in Eq.

n ry — !
(1) is straightforward and results in the following quartic Go(r.r )_zk PNiT) Gol @) dnidr "), (18)
term:
gr ¥ o Go(wp)=[iwn+p—ey+iPg,]H (19
= a o B B
2 rw%m lﬂ“’”(r)w“’n(r)%m(r)w‘“m(r) (12 whereey= wy(N+1/2) and¢y(r) are the eigenvalues and

] ) ) eigenfunctions of the Hamiltoniar#{,, and k denotes
in the action. This term can be decoupled by means of th%seudomomentum.

Hubbard-Stratonovich transformatfdnwith the Hermitian In the case of a small disordes,7,>1 the solution of
matrix field variable&? Q4(r) Eq. (17) has the forrf®
1 e e
f D[Q]expfr ~ g QAN+ (NN YT |, pn —391%n T:w\ﬁ 0 (20
S ! h
(13 P27 LTINS

where the symbol tr denotes the matrix trace over the Mat- The fluctuations of the/ field are responsible for the lo-
subara and replica indices. The measure for the functionaalization corrections to the conductivitin the weak local-
integral over the matrix fiel@ is defined as: the integrél3)  jzation regime they correspond to the maximally crossed dia-
equals unity when the Fermionic fieldg' and ¢ vanish.  gramgs. However, in the considered case, these corrections
Note also that in Eq(13) we introduce the matrix notations are of the order of IIN'N<1 and therefore can be neglected.
according to For this reason we simply pi=1.

The presence of the potential results in a shift of the

a,B K .
te N “a . \aB.,B saddle-point valu€¢20) due to the coupling to the fluctua-
vy w%m ’ﬁwn( )“m‘/’wm' (14 tions 6P =P — P, of the P field. The corresponding effec-
tive action for thesP field follows from Eq.(9) after inte-
After making all these steps, the action becomes grating out fermions:
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. NOQ, 1 _ _ _ * .
S[éP.A]=frtrlnGol— rT —gﬁtr(F’spﬂSF’)2 s=3<2)[x]+3int[5p,x]+5<2)[5p]+23 SM[6P],
(29
+ | trin[1+(i6P+N)Gy 1. 21 ;
JI’ [ ( ) 0 ] ( ) W|th
As a result, the thermodynamical potential can be written as SO = ZN_é S [aon, (30
[0} r
T n
Q=—N—anD[&P]I[éP]expS[éP,)\], (22 _
__ i —_
n o | S NI=— = [ NP, 31
where, following Ref. 24, the integration measuféP] is 9Jr
aB and
In1[sP]=— > [1-0(nm)]sPesPEE
mp)?) m P G s g
(23 SOeP]= — trHl J SP(r)Go(riri+1), (32
= T

The quadratic indP part of the action(21) together with
the contribution(23) from the integration measure determine
the propagator of théP fields (see Ref. 18 for details

wherer . ;=r;. Note that the terms in the actid@9), that
are proportional thrz, are omitted because they do not con-
tribute to Q) in the replica limitN,— 0. Another important
P (q)sPX° (—q) observation is that the propagator of #ie fields is the same
( MMz M3 ) as for theSP fields (24).
g5mlm45m2m35aa5ﬂy _2[1_ & (mmy)] By using Eqs(28)—(32) we can write

1+ gmli(mg—my;q) (mp)? T ! S
59_—@%fr)\(l’))\(l’)—N—r|n<eXpSint>y (33

96mm, 8" 96m.m,8°7

(29 \vhere (---) denotes the average ov@P with respect

to the actionS[SP,0]. This equation allows us to find
where the bare polarization operatef'(n;q) is the contributions to the thermodynamical potenti@l
up to any order of the CDW order parametér(q)
75(n;9)=—N Go(@m+ 7)) Golwm) FR(Q).  (25)  =Fy(a)U(a) N (g)/L,L,.

In this paper we will work only with the expansion up to
the fourth-order tern{the Landau expansionThis implies
that our consideration is valid only close to the transition

To find the expansion of the thermodynamical poterfial  point where the value of the order parameter is small and one
in powers of the CDW order parametAr(q), it is conve-  can truncate the seri¢28) after several first terms. It should
nient to introduce a new variabP=5P+i\ and expand be mentioned, however, that we should avoid a direct vicin-

trin in the action(21) in powers of this new fieldP. Then ity of the phase transitiofithe critical region, for more de-

the thermodynamical potential can be written in the form tails see Sec. IYwhere the fluctuations of the order param-
eter break the mean-field approach.

1+gmy(0;q) 1+gm,%(0;q)

D. Thermodynamical potential

1. Second-order contribution

where The second-order contribution to the thermodynamical

1 potential 5Q is
_ -1_ = 2
QO(M)—thrln Gy Zgfrtr PSp (27

@—_ T @
. . _ , 00P=— - > | MO =5 (Shor (34
is the mean-field thermodynamical potential of the homoge- 9 oy Jr r

neous state, and P
where(- - - ) stands for the average ovéP with respect to

the actionS®[5P]. We replace the average over the full
action S{5P,0] by the average over the quadratic part

S@[5P] only because the higher order &P terms lead to

takes into account the fluctuations of the massive longitudizo contributions that are proportional mz and therefore
nal field 5P and their interaction with the CDW order pa- vanish in the replica limitN,—0.

rameter(potential\). The actionS] 6P,\] has the form With the help of Eqs(10), (24), and(31), we obtain

50 =— Nlln f D[ 6PlexpS[ 5P, \ ] (28

155328-4



PHYSICAL REVIEW B 68, 155328 (2003

MEAN-FIELD PHASE DIAGRAM OF TWO-DIMENSIONAL

FIG. 1. Second-order contribution to the thermodynamic poten-
tial. Solid line denotes electron Green function, dashes are impurity

A

IS FIG. 3. The fourth-order contribution to the thermodynamical

Ilnés and vertexes ane(r)
q). (39

50 T U2(q)G3(wp)
=n_5 A(g)A(—
ng Jq 1+g7-rg’"(0,q) (Q) (

potential.

T
s0W=— m(sfnt>(°)

The contribution of the third power of the CDW order

parameter to the thermodynamical poten#®§(®) can be T
= 4|N <§nt

where again only terms which is proportionalNg are kept

By using Eqs(10), (24), (31), and(32), we find

The corresponding diagram in the usual “cross technique”
(©)
> , (39

0

shown in Fig. 1.
sy Z (3(3))

2. Third-order contribution

written as
59(3)__m<§nt 9= 3|N SQ)nts(3)>(c)a (36)
where the superscrigt) indicates that only connected dia- 9(4) U(q,)A(g)Go(wp,)
grams are taken into account. Here we omit again the terms - =(2m)? g Z H f J wjn
that vanish in the replica limiN,— 0. After performing the xLy on 1=t | Ja;  14+gm,"(0,q))
averaging ovesP with the help of Eqs(10), (24), (31), and 1 o
: —g7,"(0,|d; +dg)
(32), we obtain X &(d1+ 0zt g3+ da)
1+gm,"(0]as+dgl)
59(3) U(d;)A(d))Go(wn) i
2m)%n J — : L el — aY o) exon
My =(2m) L3 % Jl—I g 1+gmen(04)) Xesz(%QZ CI1CI2)eXF32(Q3Q4 9394). (39
(. In the usual cross technique the contributiéf(®) corre-
(91 + 02+ d3)exp5 (4102~ 9102) (37 sponds to the diagram shown in Fig. 3.
E. Free energy
The free energy of the CDW state can be written in the
(40

The contributionsQ ) corresponds to the diagram in Fig. 2
form
F=Fo+Q(p) = Qo(pmo) + (1~ po)Ne,

where 7 is the free energy of the normé&omogeneoys
state,N, the total number of electrong, and .y the chemi-
cal potentials of the CDW state and the normal state

respectively.
In order to find the free energy of the CDW state to the
fourth order in the CDW order parameter we exp&y{ o)

3. Fourth-order contribution

The fourth-order contributio®Q ) is

around the poinju to the second order ip— wq. This re-

*Qq
. (4D

1 2
Qo(p) = 5 (1= ko) 7n
0

sults in

F=Fot Qp)—

FIG. 2. The third-order contribution to the thermodynamical po- The differenceu — wq of the chemical potentials in the CDW

and the normal states is

155328-5
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‘959(‘9Ne)_1 24T5(Q) [ 1 3
o= , (42 S L E—
N e 2% el
and from Eq.(26) we obtain \/§Q2 1
L1 950®\ 2/ | -1 +| 1+cos— )[Dn(Q)+Dn(\/§Q)]+§Dn(2Q)}
F=Fot Qu+ 00+ = ) (—e) . (43
0 2\ du I s & 2 S ¢ -1
+3 —_— o , 51
With the expressiori35) for 60 this gives T [E£2+2(Q))? ( = ) &)
nu(L,Ly)® U%()G5(wp) &-74(Q)
4t 2x 2 f 2 (g Dn(Q)= 53— — (52)
on Ja [1+gm,"(0,0)] &+7v(Q)
? 2 -1 2. Unidirectional CDW state
XA(=q)| | T2 Gh(wn) (44 _
©n The CDW order parameter of the unidirectional state
(stripe phaseis® 2
F. Free energy of the CDW states (277)2
1. Triangular CDW state A(g)= L, A(Q[d(g—Q)+48(q—Q)], (53
The CDW order parameter for the triangular lattice Sym-yhere the vectof is oriented along the spontaneously cho-
metry (bubble phasecan be written in the forh sen direction, and from Eqg€35), (37), (39), and (44), the

free energy of the unidirectional CDW state reads

@m? o
()= T -AQ) 2 [8(a-Q)+a(a+Q)], (49 LL
Y . ]-'“=]-‘o+4#TO(Q)(b2A2+b4A4). (54)
where the vectorQ); have the angle #/3 between each TH
other and obey the conditio, + Q,+Q3=0. _ Here the coefficientb, andb, of the Landau expansion are
By using Egs.(35), (37), (39), and (44), we obtain the
following expression for the free energy of the triangular a To(Q)
CDW state: b2=—2=< - — ) (55)
3 T o &+94(Q)
L,L
Fl= Fot 4 S To(Q)ach?+ asd*+a,0%). - (49 and
Ty
_4THQ)

Here the three coefficients,, a,, and a; of the Landau b,=

& 1
Dn(0)+ 5Dn(2Q)
expansion are as follows:

no[E+yA(Q)]*

2 — ; . 56
% [§§+72(Q)]2) oz %9

Expression$46)—(52) for the free energy of the triangular

CDW state and Eqs(54)—(56) for the free energy of the
1 1 1 F\(Q) unidirectional CDW state are the key results of the present
&=n+ =+ —i—, Y(Q)= (48) paper. They generalize the results from Refs. 7 and 8 for the
2 AmTr 2@T AmTT clean case to the weakly disordered case, and coincide with

with uny=u— €y being the chemical potential measuredthem in the limit 17—0.

from the Nth Landau level and

a*Te

To(Q) 1
T W E+94Q))

a,=3( 1— (47

where

I1l. MEAN-FIELD PHASE DIAGRAM
To(Q)=U(Q)/4, (49 A. Instability line

5 ) 3 The vanishing of the coefficient in front of the quadratic
:igTo(Q) os( \/§Q ) én (50) term in the Landau expansion of the free energy signals
7372 4 nol §ﬁ+ 72(Q)]3’ about the instability of the normal state towards the forma-
tion of the CDW. This instability corresponds to the second-
and order phase transition from the homogeneous state to the

as

155328-6
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CDW state. As usual, the specific parameters of the forming T 7¢(3) ME: 1
CDW state are determined by the high-order terms in the —=1- —— = un<Ty. (61)
Landau expansion. To wTor  4T5 27
From Egs.(47) and (55 we obtain the following equa-
tion: In the opposite cas€<T,, Eq.(59) reduces to
T 1 1 2,2
LI e S L N LA ANy
To(Q) 727 £+49%Q) To a2 8ToT  16T2 8Tor ~'To

62
for the instability line. The solutio(Q) of this equation 62

depends on the modulu® of the vector that characterizes We see from Eq(62) that the second-order phase transition
the CDW state. The temperatuie, of the second-order into the CDW state can occur only if the broadeningr142
phase transition corresponds to the maximal valu&(&)): the Landau level is smaller than the critical valuerL(Zy),
which depends on the chemical potentia}. The maximal
To=maxaT(Q) (58  value of 1fF.(uy) is reached ajy=0 and equals

and the corresponding val@,, T,=T(Qg), determines the 1 8T,
period of the CDW state. The Hartree-Fock potentld) has —_—=—

Te aw

(63)
minima at those vector®), for which the form factor

EN(QK) \finishes. In the clean case this correspond@do  Equationg61) and(62) shows that, provided the broadening
=minQ=ro/R;, wherero~2.4 is the first zero of the Bessel . the | andau level 1/2 is smaller than the critical one,
function of the first kinc It can be seen from Eq57) that a 1/27<1/2r,, the region of existence of the CDW state on

weak disorder does not shift the vectQp (see AppendiX  he phase diagram in the disordered case is smaller as com-
Thus the equation for the temperature of the second—ord%ared to the clean case.

phase transition into the CDW state reads

B. Half filled Landau level (vy=1/2)

1 N _ _
st =t/ (59 We now consider the case of the half fill&th Landau
2 4xTr 2@T . X

level (vy=1/2), that is related to the recent experimehts.

where ¢’ (z) is the derivative of digamma function, Re the this case the chemical potential is zepg;=0, provided the

real part, and o= T,(Qy) is the temperature of the transition density of states is symmetric around the center ofNitie
in the clean case. According to Ref. 6, Landau level. As follows from Eq59), the temperature of

the second-order phase transition for this case can be found

from the equation
rswy c
1+—

Cc
To= In e
0 477\/5[ rs) \/E—I-I’S

wherec=1/(/2r)~0.3, and the transition temperattifg

is determined by the characteristic Coulomb enesgiR. - P . .
— oy 2< oy where {(2,2)=%,_o(m+2z)”~ is the generalized Riemann

zeta function. The analytical solutions of this equation in the
cases of high and low temperatures can be obtained from
Egs.(61) and(62) by puttinguy to zero. The entire behavior

of the solution(spinodal ling, obtained numerically from
Eq. (64), is shown in Fig. 4.

, (60)

To =2

T 2 1 1 64
2" ams) (04

Equation (59) contains the chemical potentiady mea-
sured from theNth Landau level that, together with the tem-
peratureT and the broadening of Landau levels 4,/2leter-
mines the filling factorvy=v—2N of the partially filled
highest Landau level. However, in order to find this relation i - .
one needs to know the density of states in the system. Thi We menﬂon_that aby=1/2 the coe_ff|C|enla3 vanishes
question about the density of states is a very sébted ue to the particle-hole symmetry. This means that the tran-

beyond the scope of the present paper. For this we use tiion from the normal state into the CDW state is of the
chemical potentiajey rather than filling factom,. second order for both cases of unidirectional and triangular

Equation(59) can be solved analytically in the two ex- lattice symmetry. Therefore, to find the structure of the CDW
treme cases: when temperatires closed to the temperature state, one has to tqke Into account the fourth—_order terms in
T, of instability in the absence of disorder, and when thethe Landau expansion. In the vicinity of the spinodal line, it
temperatureT is close to zero. follows from Egs.(51) and(56) with uy=0 that

In the first case, the broadening of the Landau levet1/2
and the chemical potentigky are small compared to the
temperaturd y of the instability in the clean case, and there-

1213
ay=—,—; [~ 7L(40) +1204(u) + 6D, (u) + 8D ;5(u)]
T

fore the leading order expansion in powers of g/ and (65)
un/To is legitimate. It appears that the presence of disorder
decreases the temperature of instability linearly: and
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FIG. 4. Phase diagram aj,=1/2. The spinodal line obtained

from Eq. (64) is shown by the solid line. The triangles and rhombi

are the experimental data after Ref. 9.

3

2T,
b= pe [—3Z(4u) +4Do(u) +2D5(u) ],

(66)

where we introduce the new variable= 1/2+ 1/47 T+ and
the new function

PES I . S
stz|=——F—— stz
N2 2gyarg T2
1 o 1 .
zjo(aro) m i 2+z+|zjo(aro)

(67)
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for the triangular CDW state, and

2 8T 3
W"T) Ha(unm,QR) (70

=3 bi=3

for the unidirectional CDW state. Here we introduce four
functionsH;(z) as

Hi(z)= H,(z)=4zH,(2), (71)

1+42%

1 10&%-5 1
ﬁ+3Ro(z,r)+2Rl(z,r)+ ERZ(z,r)

+2R\;§(Z,r),

Hs(z,r)=

(72)
and

2

(73

Hy(z,r)= 3+2R0(z,r)+R2(z,r),

2
(1+47%)
where

Hi(z2 1

2 (ar)
3 arctal
jo(ar) Jo(ar)

r"1+4z2—j§(ar) '
(74)

Ra.(z,r)=

As a result, the instability line obeys the equation

mzHl(MNT), (75

which is the zero temperature limit of EGQ9). In the case of
a small chemical potentigty<T,, the solution of Eq(75),

v
8T07'_

m? MN
16 2! ,LLN<T0,

(76)

with Im being the imaginary part. With these expressions we

can minimizeF"" with respect to the order parameterand

follows from Eq.(62) at T=0.

find that the unidirectional CDW state has lower free energy. The line of the first-order transition from the liquid to the

Therefore, at a half filled Landau levedy=1/2, and 1f

triangular CDW state is determined by the following equa-

<1/, the transition takes place from the liquid state intotion:

the unidirectional CDW state. We will compare these results

with the experimental ones in Sec. V A.

C. Phase diagram at zero temperature

In this section we analyze the zero-temperature phase dia-
gram in the case where the Landau level broadening is close

to its critical value 1/2,=4T,/w. Under these conditions,
the CDW order parametek is small, and one can use the
Landau expansion&16) and (54) at zero temperature. The
coefficients of these expansions are

8T0’T 8TOT 2
a,=3| 1- Hi(unt) |, az=27 p Ho(unT),
(68)
and
,(8To7)?
au=3m - Hs(unT,QRe) (69)

T n 2(,U~NT)
8Tor 1N G 7 OR)

As before, the maximum of the solutionsr(®@) of Eq. (77)
with respect taQ should be found. It appears that the maxi-
mum is not exactly aQ=Q, as in the clean casebut at
some shifted value Qy+6Q with the shift 6Q=
—0.003(un/To)?R.* for small chemical potentialuy
<T,. The existence of the shift is a feature of the disordered
case. Below in the limijuy<<Ty, we will neglect this shift.

In this case Eq(77) can be written as

(77

8T07' (78)

By comparing the free energies of the triangular and the
unidirectional CDW states, we can find the line of the first-
order transition between them
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e i ergy and average over the fluctuatiofs). We present be-
' low the results of the corresponding analysis only for the
opo5L L most interesting case of the half filled Landau level.
We find that the transition from the liquid to the unidirec-
" tional CDW state becomes of the first order, and takes place
" 0890 \ i at the lower temperature that can be found from the follow-
= Triangular ing equationsee Eq(64) for comparisoif
B el CDW state® i
.g 1 K \\ 8 T 2 1 -
e Unidirectional " % T_oz ?g( 21§+ AnTr -9 47T-|—7_)N 2B (@8
0980T CDW state T
T | Here functiong(z) is defined as
0'9750.00 002 004 006 008 0.0 012 0.14 016 018 020 3, 2/3 )\cZ)(Z) 2/ 20o(2) + A\ o(2) 1/3
Chemical potential, u /T, g(z)=3 16 5 3[4)\0(2) Th2) , (82

FIG. 5. Phase diagram at zero temperature ngar1/2. The
solid line is obtained from Eq.77), the dashes are the instability
line (75) and the dots are obtained from E{9).

where we introduce the following three functions:

2 1 1
f(2)= —|Bul| 25 +2| + 2% 45 +2||, (83

7, HE2Hst HAI3He JHET 2HH,] w2772 o

8Tor * 2H4(2Hy—3H,)? '

(79 2 1 1

)\a(Z):—4 - 4,§+Z +2<Da 4,§+Z , (84)
For the casquy7<1, EqQ.(79) can be simplified as ™
5 The constant®; are given by
& N
:1—2.84“—2, un<To. (80) ,

8ToT Th To(Qo) , 2

BﬁW%ZBB, B2=[T0(Qo)]°~0.27, (85

For other values ofuy /Ty, Egs.(75), (77), and(79) were
solved numerically. The results are shown in Fig. 5. Thes@nd function®, is defined by Eq(68).
results show that for a fixed value of the chemical potential We mention that the functionr?g(z)/2£(2,1/2+2) de-
un#0 and decreasing disorder parameié8T,7, the elec- creases monotonically from the value 0.3%&t0 to zero at
tron system undergoes first the transition from the liquidz—«. Therefore we obtain the following inequality for the
state into the triangular CDW state and then into the unidishift 5T of the mean-field transition temperature
rectional CDW state. We should mention, however, that this
statement is proven only for small values of the chemical ST o
potential u\<T, and for values of the disorder parameter ?<3 1673,
/8T y7 close to unity. Outside of this region, the CDW order B1
parameter is not small, anc_i hence we go beyond the applicge equality corresponds to the clean case.
bility of the Landau expansion. Nevertheless, the topology of 1pe appearance of a noninteger power in @4) results

2/3
) N-23  N>1, (86)

the phase diagram should remain the same. from the fact that the momentum dependence of the correla-
tion function for the order-parameter fluctuations contains
IV. WEAK CRYSTALLIZATION CORRECTIONS (Q—QO)2 rather tharQ2 (see Ref. 28

The CDW order parametéx(r) introduced in Eq(5) can Equatlon(s;) was derived under the assumption that the
main contribution in the momentum space comes from the

be thought of as a saddle-point solution for the plasmon field . N . S
that appears in the Hubbard-Stratonovich transformation (ﬁeglonQ~Q0. This assumption is justified under the follow-

the electron-electron interaction in the acti@). The Lan- ing condition:
dau expansiongt6) and(54) for the free energy of the CDW 1

states were derived under the assumption that one can ne- g( )

glect the fluctuations of the CDW order parameter. This is 2/3

A7 Tr
87

legitimate forN>1 and not very close to the transitigout- )

side the critical region However, when one approaches the rof(m
instability line, the fluctuations of the CDW order parameter

increase. To analyze the effects of the order-parameter fluédche combination of functions in the left-hand side of in-
tuation, we introduce, following the original ideas of equality(87) decreases monotonically from 0.023 to 0 while
Brazovski?® the fluctuations of the CDW order parameter z increases from zero to infinity and hence the condit®n
A(r)—A(r)+ &(r) in the Landau expansion of the free en- holds.
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According to Eq.(86), the fluctuations reduce the transi- netic field should satisfy the conditionuy>0.55
tion temperature by the amount of the ordeNdf?®*<1 and ~ x 10%N/n,. For typical values of the electron density of the
therefore in the considered case of the weak magnetic fielelyo-dimensional electron gas,=10' cm™2, we can obtain
(N>1) their effects can be neglected. These results indicatghe following estimateju,>Nx 10° cn?/V's.
that the critical region for the considered transition is indeed | the experiments of Lillyet al.’ the samples were rela-
small, and the mean-field approach gives a good approximasyely clean, 1o>9x 10° cn?/V's, and the electron density
tion for N>1. _ _ ne~2.67x 10'* cm™2. At the temperaturd =150 mK, they

As the Landau level indeX decreases, the fluctuations of yetected an anisotropy in the resistance only in the half filled
the order parameter around the mean-field solution becomg_» | ondau level, whereas for higher Landau levels,

Important, see Eq86). In this regime, detailed microscopi- >2, the resistance remains isotropic. As the temperature de-
cal calculations are hardly possible due to the absence of a

successive microscopic theory. One can, however, make prr%[eas.e's below 150. m|§, the anisotropy in the resistance at
dictions for the effect of disorder on the phase diagram o alf filling appears in hlgher L_andau levels. At the tempera-
the basis of a phenomenological elastic thébdescribed by '€ T=25 MK, substantial anisotropy was already observed
an effective Hamiltonian for the fluctuations of the displace-In the half filledN=2,3,4 Landau levels. We plot the experi-
ment field associated with the translational symmetry breakMental data from Ref. 9 in Fig. 4 by using E¢88) and(89).

ing. The parameters of the Hamiltonian are phenomenologiVe @lso assume that E¢88) remains valid even foN
cal constants, which, for the reasons discussed above, canriof:3,4, and 5. As it can be seen, the behavior of the transi-
be calculated microscopically. Our microscopic approach i$ion line is in the agreement with the experimental data: the
therefore a complementary one, that is valid in the limit of@nisotropy in electronic transport &t=150 mK exists only

=2,3, and 4, but not foN=5, where the disorder induced
V. DISCUSSIONS transition from the CDW state 'mto the isotropic liquid stgt'e
takes place. It should be mentioned that when the transition
A. Comparison with experimental results temperature be independent on the disorder, the anisotropy in

Now we discuss the possible applications of our theory tghe resistance al=25 mK should remain up t&=12, as
the recent experiments. Although our mean-field theory wa§a" be seen from Eq$88) and (89). Therefore the role of
derived for the case of a large number of the occupied LandiSOrder is very important. _ _
dau leveIN>1, and neglects corrections of the order dfi 1/ The quantitative agreement of our theory with the experi-
while experimentally one has=2,3,4, we, however, expect mentgl data is surprisingly good. In our app(oacr_l, we treat
that Eq.(59) gives a good estimation for the temperature ofthe Q|sorder as a short-range random potenn_al with the cor-
the transition from the liquid to the CDW state, even for  '€lation length much smaller than the magnetic ledgthin
=2.3,4. We have complementary assurance that it can real he experimental samp[es, however, the disorder potential
be the case because E§9) can be obtained without intro- @S long-range correlations. Therefore our theory can pro-
ducing the CDW order parameter and considering the meanide in this case only a qualltatllve picture. A thorough _study
field theory but as the equation that determines the temper&f the effects of a long-range disorder on the phase diagram
ture T(Q) at which the two-particle vertex function at wave cannot be p_erfo_rmed within the considered self-consistent
vectorQ diverges?® Born approximation scheme and goes beyond the scopes of

We restrict ourselves by discussion of the experiment§he present paper.
without an in-plane magnetic fieft° The theory for the half
filled highest Landau level contains two physical parameters:
the temperaturd, and the broadening of the Landau level
1/27. According to Eq(60), in the absence of a disorder and  The problem of the formation of the CDW state on the
in a wide range of the parametey, the transition tempera- second Landau level withy=1/2 at zero temperature in the

B. Comparison with numerical results

ture Ty can be estimated as presence of a quenched disorder was studied numerically in
Ref. 30. The system of 12 electrons interacting via the Cou-
To=0.008»y, 0.1<rs<1l. (88)  lomb interactionU(q)=2me?/q in the presence of the

quenched disorder was projected on the second Landau level

We can estimate the broadening 4/8f the Landau level X ) ;
(N=2). The effects of interactions with electrons on the

from the mobility uq at zero magnetic field. With the help of

Eq. (20), we obtain other I__andau_ level was not taken into account. The system
was diagonalized numerically. It was found that the CDW
1 2N e state transforms into the liquid state as the dimensionless
7 Voagnr (89)  disorder strengtlw\/n, /2mpr, exceeds 0.12.
o''e

In order to be able to compare the results of the presented
wheren, is the density of the two-dimensional electron gas.above mean-field theory with the numerical results, we per-
The results obtained in Sec. Il B impose the restrictionform the evaluation of the temperatufig in the case for
on the value of the sample mobility, at zero magnetic which the numerical results were obtaingastead screened
field. In order to observe the CDW states at the partiallyinteraction(3) we useU(q)=_2me?/q). Under this circum-

filled Landau level with indeXN the mobility at zero mag- stances our theory gives the value 0.14.
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The small discrepancy may be attributed to two factorsForschungszentrum “lich (Landau Scholarshjp Russian
on the one hand, the finite number of electrons in numericaFoundation for Basic Resear¢RFBR), and Deutsche For-
calculations and, on the one hand, unsufficiency of theschungsgemeinschafdFG).
Hartree-Fock approximation for the problem with the Cou-
lomb interaction U(q)=2me?/q. In the latter case one APPENDIX: INSTABILITY VECTOR
should take into account the diagrams beyond the Hartree-
Fock theory. Nevertheless, the comparison demonstrates that In this appendix we prove that the weak disorder does not
such corrections are small. change the vector at which the instability towards the forma-

We emphasize that our theory which takes into accountion of the CDW state grows. Let us consider the solution
the screening of electron-electron interaction by electrons off + T of Eq. (57) for the vectorQ=Q+ 6Q, where 5Q
the other Landau levels gives much smaller value 0.01 of thesQo. We will now show that the shif6T is always nega-
dimensionless disorder strength for the transition from thdive, and hence the maximal instability temperature corre-
liquid state to the CDW state. sponds to the vectd@=Q,, as it is in the clean case.

For a small deviatiordQ we can write

To(Q)=To[1- B1(QR)?],  J5(QR:)=Bo(SQR,).
For the system of a two-dimensional interacting electrons (A1)

in the presence of a weak disorder and a weak magnetic fielj, . . _—
we investigated the effect of disorder on the existence of th he shift 6T results in the substitution

mean-field CDW states in the framework of the Hartree-Fock

VI. CONCLUSIONS

approximation. In the considered case of large filling factors £ én— i_i ‘sT_'“ (A2)
v>1, we obtained that the mean-field CDW instability ex- AnT?r  2wT?

ists if the disorder is rather weak, 7 8Ty/7. We found . .

that at half filling the unidirectional CDW state appears, and™ Ed- (57), and we obtain

the presence of disorder does not change the vector of the ST Bi0y+ a7

CDW. Near half filling, the unidirectional CDW state is en- — =—(8QR,)?) 1927 P2z G4 (A3)

ergetically more favorable than the triangular one. We ob- T 92—2(293+y§)’

tained that the weak crystallization corrections to the mean- B _ .

field result are of the order of (2)%3<1 and thus can be Wherez=1/4nTr andy=pu/2aT. Here we introduce the
neglected. We discussed the applications of our theory to thiUr functionsga(z,y) andga(z,y),

recent experimental and numerical results.

Yy)=Re>, £ gazy)=| T (A4
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