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Mean-field phase diagram of two-dimensional electrons with disorder in a weak magnetic field
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We study two-dimensional interacting electrons in a weak perpendicular magnetic field with the filling factor
n@1 and in the presence of a quenched disorder. In the framework of the Hartree-Fock approximation, we
obtain the mean-field phase diagram for the partially filled highest Landau level. We find that the charge-
density-wave~CDW! state can exist if the Landau level broadening 1/2t does not exceed the critical value
1/2tc54T0 /p, whereT0 is the critical temperature of the CDW formation in the clean case. Our analysis of
weak crystallization corrections to the mean-field results shows that these corrections are of the order of
(1/n)2/3!1 and therefore can be neglected.

DOI: 10.1103/PhysRevB.68.155328 PACS number~s!: 72.10.2d
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I. INTRODUCTION

A two-dimensional electron gas~2DEG! in a perpendicu-
lar magnetic field was a subject of intensive studies, b
theoretical and experimental, for several decades. The be
ior of the system in a strong magnetic field where only
lowest Landau level is occupied has been investigated
great details.1 Several attempts2,3 were made in order to in
corporate the case with larger filling factorsn.1 into the
theory. Usually in these approaches, the ratio of the cha
teristic Coulomb energy~at distances of the order of th
magnetic length! to the cyclotron energy has been assum
to be small. However, in a weak magnetic field this is not
case, and the characteristic Coulomb energy exceeds th
clotron energy. An attempt to investigate the situation w
large Coulomb energy was made in Ref. 4.

The progress in understanding the clean 2DEG in a w
magnetic field was achieved by Aleiner and Glazman.5 They
have derived the low-energy effective theory on the partia
filled highest Landau level by using the small parame
1/n!1. By treating the effective interaction within th
Hartree-Fock approximation, Koulakov, Fogler, a
Shklovskii6 predicted a unidirectional charge-density-wa
~CDW! state~stripe phase! for the half filled highest Landau
level at zero temperature and in the absence of disor
Moessner and Chalker8 extended the ideas of Fukuyam
Platzmann, and Anderson7 to the case of a partially filled
highest Landau level and showed the existence of the m
field CDW state on the half-filled Landau level below som
temperatureT0.

Recently, the existence of compressible states near
filling with anisotropic transport properties was demo
strated experimentally for high Landau levels.9,10This stimu-
lates an extensive study of the clean 2DEG in a weak m
netic field and pinning of stripes by disorder.11

In the clean case, the properties of the CDW states ca
described on the basis of the low-energy effective theory
smooth ‘‘elastic’’ deformations.11 Recently, attempts were
made to derive such a theory microscopically starting fr
0163-1829/2003/68~15!/155328~12!/$20.00 68 1553
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the mean-field solution.12,13The effects of a quenched diso
der on the unidirectional CDW state~stripe phase! were in-
vestigated in the framework of the phenomenological el
ticity theory,14 and a rich variety of different regimes, whic
depend on the strength of disorder, were found. Howeve
identify the phenomenological parameters of the theory
successive microscopic theory should be developed.

At present, a thorough microscopic analysis of the effe
of disorder on the mean-field transition from the liquid sta
to the CDW one, as well as on the phase diagram of
mean-field CDW states, is absent. The main objective of
present paper is to investigate these effects on the exist
of the mean-field CDW states in 2DEG in a weak perpe
dicular magnetic fieldH ~filling factor n@1). For the con-
sidered case of a large number of the occupied Landau
els, the mean-field analysis is legitimate because
fluctuations of the order parameter are strongly suppresse11

On the other hand, the mean-field approach cannot be
plied to the critical region in the direct vicinity of the phas
transition. This region is, however, small and does not lea
any significant uncertainty in our results for critical tempe
tures of the transitions.

We assume the presence in the system of a w
quenched disorder, i.e., the elastic collisions time satisfies
conditiont0@vH

21 , wherevH5eH/m is the cyclotron fre-
quency,e the electron charge, andm the effective electron
mass~we use the units with\51, c51, andkB51). Under
this condition, the Landau-level broadening 1/2t, which is of
the order ofAvHt0/t0, is much less than the spacingvH
between them. This case can be realized in high mob
samples which were used for experimental studies of
anisotropic magnetotransport.9,10,15Keeping in mind that the
relation T0;1/t usually holds, one expects a much mo
pronounced influence of the quenched disorder on the p
erties of electrons on the partially filled highest Landau le
even for a small level broadening 1/2t!vH .

One of the main results of our paper is that at zero te
perature the mean-field CDW state is destroyed when
Landau-level broadening exceeds the critical value 1/tc
©2003 The American Physical Society28-1
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I. S. BURMISTROV AND M. A. BARANOV PHYSICAL REVIEW B 68, 155328 ~2003!
54T0 /p. At nonzero temperatures the quenched disor
leads to the decrease of the temperature of the CDW in
bility as compared to the clean case. The physical reaso
that the scattering on impurities breaks the CDW corre
tions, and therefore results in the destruction of the cohe
CDW state. This is somewhat similar to the suppression
the critical temperature in conventional superconductors
magnetic impurities16 or in anisotropic superconductors b
nonmagnetic impurities.17

The paper is organized as follows. In Sec. II we introdu
the formalism that allows us to evaluate the free energy
the CDW state in the presence of disorder. In Sec. III
investigate the instability of the liquid state towards the f
mation of the CDW state, and present the mean-field ph
diagrams at the half filling and arbitrary temperature, and
zero temperature and arbitrary filling. The weak crystalliz
tion corrections to the mean-field solution are presented
Sec. IV. Section V contains the comparison of the the
with the recent experimental and numerical results. We
with conclusions in Sec. VI.

II. FREE ENERGY OF THE CDW STATES

We consider two-dimensional interacting electrons in
presence of a weak quenched disorder and a weak per
dicular magnetic field. The parameter that characterizes
strength of the Coulomb interaction isr s5A2e2/«vF with
vF being the Fermi velocity and« the dielectric constant of a
media. We assume that the Coulomb interaction between
electrons is weak,r s!1, and the magnetic field obeys th
conditionNrs@1, whereN5@n/2# is the integer part ofn/2.
In this case it is possible to construct an effective-field the
for the electrons on the highest partially filled Landau le
by integrating out all other degrees of freedom.5,18 We also
assume that the electrons on the partially filled highest L
dau level are spin polarized. This assumption is based on
calculations3,19 that show the existence of fractional state
composite fermions, and skyrmions only on the lowest a
the first excited Landau levels, as well as on the experime
observations.

In order to study the transition from the liquid state to t
CDW one we employ the Landau expansion of the free
ergy in powers of the CDW order parameterD(qj ), where
the vectorsqj that characterize the CDW state have the sa
length7 qj5Q. We perform the expansion up to the four
order in the CDW order parameter under the assump
Nrs

2@1. In this case the Hartree-Fock approximation is w
justified8 because the corrections are small in the param
aB / l H51/Nrs

2!1, whereaB5«/me2 is the Bohr radius and
l H51/AmvH the magnetic length.

A. Formalism

The thermodynamical potential of the spin-polariz
2DEG projected on theNth Landau level in the presenc
of the random potentialVdis(r ) and the magnetic field is
given by
15532
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V52
T

Nr
E D@c̄,c#E D@Vdis#P@Vdis#exp~S@c̄,c,Vdis# !,

~1!

where the actionS@c̄,c,Vdis# in the Matsubara representa
tion has the form

S5E
r
(
vn

a H cvn

a ~r !@ ivn1m2H02Vdis~r !#cvn

a ~r !

2
T

2 (
vm ,n l

E
r8

cvn

a ~r !cvn2n l

a ~r !U0~r ,r 8!cvm

a ~r !

3cvm1n l

a ~r 8!J . ~2!

Here cvn

a (r ) and cvn

a (r ) are the annihilation and creatio

operators of an electron on theNth Landau level,T the tem-
perature,m the chemical potential,vn5pT(2n11) the
Matsubara fermionic frequency, andnn52pTn the Bosonic
one. The free HamiltonianH0 for 2D electrons with massm
in the perpendicular magnetic fieldH5eab]aAb is H05

(2 i¹2eAW )2/(2m). The screened electron-electron intera
tion U0(r ) on theNth Landau level takes into account th
effects of interactions with electrons on the other levels, a
has the form~see Ref. 5 for the clean case and Ref. 18 for
weakly disordered case!

U0~q!5
2pe2

«q

1

11
2

qaB
S 12

p

6vHt D @12J 0
2~qRc!#

, ~3!

whereRc5 l HAn is the cyclotron radius on theNth Landau
level andJ0(x) the Bessel function of the first kind. Th
range of the screened electron-electron interaction~3! is de-
termined by the Bohr radiusaB . We also assume the Gaus
ian distribution for the random potentialVdis(r )

P@Vdis~rW !#5
1

Apg
expS 2

1

gEr
Vdis

2 ~r ! D , ~4!

where g51/prt0 , r is the thermodynamical density o
states. This distribution corresponds to a short-range ran
potential with the correlation length smaller than the ma
netic field lengthl H . In order to average over the disord
we introduceNr replicated copies of the system labeled
the replica indicesa51, . . . ,Nr .

B. Hartree-Fock decoupling and the average over disorder

The CDW ground state is characterized by the order
rameterD(q) that is related to the electron density

^r~q!&5LxLynLFN~q!D~q!. ~5!

HereLxLy is the area of the 2DEG,nL51/2p l H
2 the number

of states on one Landau level, and the form factorFN(q) is
8-2
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FN~q!5LNS q2l H
2

2 DexpS 2
q2l H

2

4 D , ~6!

where LN(x) is the Laguerre polynomial. For the caseN
@1, one can use the following asymptotic expression for
form factor ~6!:

FN~q!5J0~qRc!, qRc!
Rc

2

l H
2

5n. ~7!

After the Hartree-Fock decoupling20 of the interaction term
in the action~2! we obtain

S52
NrVD

T
1E

r
(
vn

a

cvn

a ~r !@ ivn1m2H02Vdis~r !

1l~r !#cvn

a ~r !, ~8!

VD5
nL~LxLy!2

2 E
q
U~q!D~q!D~2q!, ~9!

where the potentiall(r ) results from the perturbation of th
uniform electron density by the charge-density wave, an
connected with the CDW order parameter as follows:

l~q!5LxLyU~q!FN
21~q!D~q!, ~10!

and U(q)52nLUHF(q) with the Hartree-Fock potentia
UHF(q) given by

UHF~q!5U0~q!FN
2 ~q!2E

p

e2 iqpl H
2

nL
U0~p!FN

2 ~p!. ~11!

The averaging over the random potentialVdis(r ) in Eq.
~1! is straightforward and results in the following quart
term:

g

2Er
(

vnvm

ab

cvn

a ~r !cvn

a ~r !cvm

b ~r !cvm

b ~r ! ~12!

in the action. This term can be decoupled by means of
Hubbard-Stratonovich transformation21 with the Hermitian
matrix field variables22,23 Qnm

ab(rW)

E D@Q#expE
r
F2

1

2g
trQ2~rW !1 ic†~rW !Q~rW !c~rW !G ,

~13!

where the symbol tr denotes the matrix trace over the M
subara and replica indices. The measure for the functio
integral over the matrix fieldQ is defined as: the integral~13!
equals unity when the Fermionic fieldsc† and c vanish.
Note also that in Eq.~13! we introduce the matrix notation
according to

c†~••• !c5 (
vn ,vm

a,b

cvn

a ~••• !nm
abcvm

b . ~14!

After making all these steps, the action becomes
15532
e

is

e

t-
al

S52
NrVD

T
2

1

2gEr
trQ21E

r
c†~rW !~ iv1m2H01l

1 iQ !c~rW !, ~15!

wherev is the frequency matrix (v)nm
ab5vndnmdab.

C. Saddle point in theQ field

The Q matrix field can be naturally split into the trans
verseV and the longitudinalP components as follows:Q
5V21PV. The longitudinal componentP has the block-
diagonal structure in the Matsubara space,Pnm

ab}Q(nm),
whereQ(x) is the Heaviside step function, and correspon
to massive modes. The transverse componentV is a unitary
rotation and describes massless~diffusive! modes~see Refs.
24 and 25 for details!.

This decomposition of the variableQ into P and V is
motivated by the saddle-point structure of the action~15! at
zero temperature (vn→0) and in the absence of the potenti
l(r ). The corresponding saddle-point solution has the fo
Qsp5V21PspV, where the matrixPsp is

~Psp!nm
ab5Psp

n dnmdab ~16!

with Psp
n obeying the equation

prt0Psp
n 5 iG0

n~r ,r !. ~17!

This equation is equivalent to the self-consistent Born
proximation equation.26 The Green functionG0

n(r ,r 8) is de-
termined as

G0
n~r ,r 8!5(

k
fNk* ~r !G0~vn!fNk~r 8!, ~18!

G0~vn!5@ ivn1m2eN1 iPsp
n #21, ~19!

whereeN5vH(N11/2) andfNk(r ) are the eigenvalues an
eigenfunctions of the HamiltonianH0, and k denotes
pseudomomentum.

In the case of a small disordervHt0@1 the solution of
Eq. ~17! has the form26

Psp
n 5

sgnvn

2t
,t5pAr

m

t0

AvHt0

. ~20!

The fluctuations of theV field are responsible for the lo
calization corrections to the conductivity~in the weak local-
ization regime they correspond to the maximally crossed d
grams!. However, in the considered case, these correcti
are of the order of lnN/N!1 and therefore can be neglecte
For this reason we simply putV51.

The presence of the potentiall results in a shift of the
saddle-point value~20! due to the coupling to the fluctua
tions dP5P2Psp of the P field. The corresponding effec
tive action for thedP field follows from Eq.~9! after inte-
grating out fermions:
8-3
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S@dP,l#5E
r
tr ln G0

212
NrVD

T
2

1

2gEr
tr~Psp1dP!2

1E
r
tr ln @11~ idP1l!G0

21#. ~21!

As a result, the thermodynamical potential can be written

V52
T

Nr
lnE D@dP#I @dP#expS@dP,l#, ~22!

where, following Ref. 24, the integration measureI @dP# is

ln I @dP#52
1

~pr!2E (
nm

ab

@12Q~nm!#dPnn
aadPmm

bb .

~23!

The quadratic indP part of the action~21! together with
the contribution~23! from the integration measure determin
the propagator of thedP fields ~see Ref. 18 for details!,

^dPm1m2

ab ~q!dPm3m4

gd ~2q!&

5
gdm1m4

dm2m3
daddbg

11gp0
m1~m32m1 ;q!

2
2@12Q~m1m3!#

~pr!2

3
gdm1m2

dab

11gp0
m1~0;q!

gdm3m4
ddg

11gp0
m3~0;q!

, ~24!

where the bare polarization operatorp0
m(n;q) is

p0
m~n;q!52nLG0~vm1nn!G0~vm!FN

2 ~q!. ~25!

D. Thermodynamical potential

To find the expansion of the thermodynamical potentiaV
in powers of the CDW order parameterD(q), it is conve-
nient to introduce a new variabled P̃5dP1 il and expand
tr ln in the action~21! in powers of this new fieldd P̃. Then
the thermodynamical potential can be written in the form

V5V01VD1dV, ~26!

where

V0~m!5E
r
tr ln G0

212
1

2gEr
tr Psp

2 ~27!

is the mean-field thermodynamical potential of the homo
neous state, and

dV52
T

Nr
lnE D@d P̃#expS̃@d P̃,l# ~28!

takes into account the fluctuations of the massive longitu
nal field d P̃ and their interaction with the CDW order pa
rameter~potentiall). The actionS̃@d P̃,l# has the form
15532
s

-

i-

S̃5S (2)@l#1Sint@d P̃,l#1S (2)@d P̃#1 (
n53

`

S (n)@d P̃#,

~29!

with

S (2)@l#5
Nr

2g (
vn

E
r
l~r !l~r !, ~30!

Sint@d P̃,l#52
i

gEr
l~r !tr d P̃~r !, ~31!

and

S (n)@d P̃#5
~2 i !n

n
tr)

j 51

n E
r j

d P̃~r j !G0~r j r j 11!, ~32!

wherern115r1. Note that the terms in the action~29!, that
are proportional toNr

2 , are omitted because they do not co
tribute todV in the replica limitNr→0. Another important
observation is that the propagator of thed P̃ fields is the same
as for thedP fields ~24!.

By using Eqs.~28!–~32! we can write

dV52
T

2g (
vn

E
r
l~r !l~r !2

T

Nr
ln^expS̃int&, ~33!

where ^•••& denotes the average overd P̃ with respect
to the action S̃@d P̃,0#. This equation allows us to find
the contributions to the thermodynamical potentialV
up to any order of the CDW order parameterD(q)
5FN(q)U(q)21l(q)/LxLy .

In this paper we will work only with the expansion up t
the fourth-order term~the Landau expansion!. This implies
that our consideration is valid only close to the transiti
point where the value of the order parameter is small and
can truncate the series~28! after several first terms. It shoul
be mentioned, however, that we should avoid a direct vic
ity of the phase transition~the critical region, for more de-
tails see Sec. IV! where the fluctuations of the order param
eter break the mean-field approach.

1. Second-order contribution

The second-order contribution to the thermodynami
potentialdV is

dV (2)52
T

2g (
vn

E
r
l~r !l~r !2

T

2Nr
^Sint

2 &0 , ~34!

where^•••&0 stands for the average overd P̃ with respect to
the actionS̃(2)@d P̃#. We replace the average over the fu
action S̃@d P̃,0# by the average over the quadratic pa
S̃(2)@d P̃# only because the higher order ind P̃ terms lead to
the contributions that are proportional toNr

2 , and therefore
vanish in the replica limitNr→0.

With the help of Eqs.~10!, ~24!, and~31!, we obtain
8-4
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dV (2)

Lx
2Ly

2
5nL

T

2 (
vn

E
q

U2~q!G0
2~vn!

11gp0
vn~0,q!

D~q!D~2q!. ~35!

The corresponding diagram in the usual ‘‘cross technique
shown in Fig. 1.

2. Third-order contribution

The contribution of the third power of the CDW orde
parameter to the thermodynamical potentialdV (3) can be
written as

dV (3)52
T

3!Nr
^Sint

3 &d P̃
(c)

52
T

3!Nr
^Sint

3 S(3)&0
(c) , ~36!

where the superscript~c! indicates that only connected dia
grams are taken into account. Here we omit again the te
that vanish in the replica limitNr→0. After performing the
averaging overd P̃ with the help of Eqs.~10!, ~24!, ~31!, and
~32!, we obtain

dV (3)

Lx
3Ly

3
5~2p!2nL

T

3 (
vn

)
j 51

3 F E
qj

U~qj !D~qj !G0~vn!

11gp0
vn~0,qj !

G
3d~q11q21q3!exp

i

2
~q1

xq2
y2q1

yq2
x!. ~37!

The contributiondV (3) corresponds to the diagram in Fig.

3. Fourth-order contribution

The fourth-order contributiondV (4) is

FIG. 1. Second-order contribution to the thermodynamic pot
tial. Solid line denotes electron Green function, dashes are impu
lines, and vertexes arel(r ).

FIG. 2. The third-order contribution to the thermodynamical p
tential.
15532
s

s

dV (4)52
T

4!Nr
^Sint

4 & (c)

52
T

4!Nr
K Sint

4 FS(4)1
1

2
~S(3)!2G L

0

(c)

, ~38!

where again only terms which is proportional toNr are kept.
By using Eqs.~10!, ~24!, ~31!, and~32!, we find

dV (4)

Lx
4Ly

4
5~2p!2nL

T

4 (
vn

)
j 51

4 F E
qj

U~qj !D~qj !G0~vn!

11gp0
vn~0,qj !

G
3d~q11q21q31q4!

12gp0
vn~0,uq11q2u!

11gp0
vn~0,uq11q2u!

3exp
i

2
~q1

xq2
y2q1

yq2
x!exp

i

2
~q3

xq4
y2q3

yq4
x!. ~39!

In the usual cross technique the contributiondV (4) corre-
sponds to the diagram shown in Fig. 3.

E. Free energy

The free energy of the CDW state can be written in t
form

F5F01V~m!2V0~m0!1~m2m0!Ne , ~40!

whereF0 is the free energy of the normal~homogeneous!
state,Ne the total number of electrons,m andm0 the chemi-
cal potentials of the CDW state and the normal sta
respectively.

In order to find the free energy of the CDW state to t
fourth order in the CDW order parameter we expandV0(m0)
around the pointm to the second order inm2m0. This re-
sults in

F5F01V~m!2V0~m!2
1

2
~m2m0!2

]2V0

]2m0

. ~41!

The differencem2m0 of the chemical potentials in the CDW
and the normal states is

-
ty

-

FIG. 3. The fourth-order contribution to the thermodynamic
potential.
8-5
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m2m05
]dV

]Ne
S ]Ne

]m D 21

, ~42!

and from Eq.~26! we obtain

F5F01VD1dV1
1

2 S ]dV (2)

]m D 2S ]Ne

]m D 21

. ~43!

With the expression~35! for dV (2) this gives

F5F01VD1dV

1
nL~LxLy!3

2 FT(
vn

E
q

U2~q!G0
3~vn!

@11gp0
vn~0,q!#2

D~q!

3D~2q!G 2FT(
vn

G0
2~vn!G21

. ~44!

F. Free energy of the CDW states

1. Triangular CDW state

The CDW order parameter for the triangular lattice sy
metry ~bubble phase! can be written in the form7

D~q!5
~2p!2

LxLy
D~Q!(

j 51

3

@d~q2Qj !1d~q1Qj !#, ~45!

where the vectorsQj have the angle 2p/3 between each
other and obey the conditionQ11Q21Q350.

By using Eqs.~35!, ~37!, ~39!, and ~44!, we obtain the
following expression for the free energy of the triangu
CDW state:

F t5F014
LxLy

2p l H
2

T0~Q!@a2D21a3D31a4D4#. ~46!

Here the three coefficientsa1 , a2, and a3 of the Landau
expansion are as follows:

a253S 12
T0~Q!

p2T
(

n

1

jn
21g2~Q!

D , ~47!

where

jn5n1
1

2
1

1

4pTt
2 i

mN

2pT
, g~Q!5

FN~Q!

4pTt
~48!

with mN5m2eN being the chemical potential measur
from theNth Landau level and

T0~Q!5U~Q!/4, ~49!

a35 i8
T0

2~Q!

p3T2
cosSA3Q2

4 D(
n

jn
3

@jn
21g2~Q!#3

, ~50!

and
15532
-

r

a45
24T0

3~Q!

p4T3 H 1

2 (
n

jn
4

@jn
21g2~Q!#4 F3Dn~0!

1S 11cos
A3Q2

2 D @Dn~Q!1Dn~A3Q!#1
1

2
Dn~2Q!G

13S (
n

jn

@jn
21g2~Q!#2D 2S (

n
jn

22D 21J , ~51!

with

Dn~Q!5
jn

22g2~Q!

jn
21g2~Q!

~52!

2. Unidirectional CDW state

The CDW order parameter of the unidirectional sta
~stripe phase! is6–8

D~q!5
~2p!2

LxLy
D~Q!@d~q2Q!1d~q2Q!#, ~53!

where the vectorQ is oriented along the spontaneously ch
sen direction, and from Eqs.~35!, ~37!, ~39!, and ~44!, the
free energy of the unidirectional CDW state reads

F u5F014
LxLy

2p l H
2

T0~Q!~b2D21b4D4!. ~54!

Here the coefficientsb2 andb4 of the Landau expansion ar

b25
a2

3
5S 12

T0~Q!

p2T
(

n

1

jn
21g2~Q!

D ~55!

and

b45
4T0

3~Q!

p4T3 F(
n

jn
4

@jn
21g2~Q!#4 S Dn~0!1

1

2
Dn~2Q! D

12S (
n

jn

@jn
21g2~Q!#2D 2S (

n
jn

22D 21G . ~56!

Expressions~46!–~52! for the free energy of the triangula
CDW state and Eqs.~54!–~56! for the free energy of the
unidirectional CDW state are the key results of the pres
paper. They generalize the results from Refs. 7 and 8 for
clean case to the weakly disordered case, and coincide
them in the limit 1/t→0.

III. MEAN-FIELD PHASE DIAGRAM

A. Instability line

The vanishing of the coefficient in front of the quadra
term in the Landau expansion of the free energy sign
about the instability of the normal state towards the form
tion of the CDW. This instability corresponds to the secon
order phase transition from the homogeneous state to
8-6
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CDW state. As usual, the specific parameters of the form
CDW state are determined by the high-order terms in
Landau expansion.

From Eqs.~47! and ~55! we obtain the following equa
tion:

T

T0~Q!
5

1

p2 (
n

1

jn
21g2~Q!

~57!

for the instability line. The solutionT(Q) of this equation
depends on the modulusQ of the vector that characterize
the CDW state. The temperatureT2 of the second-orde
phase transition corresponds to the maximal value ofT(Q):

T25maxQT~Q! ~58!

and the corresponding valueQ0 , T25T(Q0), determines the
period of the CDW state. The Hartree-Fock potential~11! has
minima at those vectorsQk for which the form factor
FN(Qk) vanishes. In the clean case this corresponds toQ0
5minQk5r0 /Rc , wherer 0'2.4 is the first zero of the Besse
function of the first kind.6 It can be seen from Eq.~57! that a
weak disorder does not shift the vectorQ0 ~see Appendix!.
Thus the equation for the temperature of the second-o
phase transition into the CDW state reads

T

T0
5

2

p2
Rec8S 1

2
1

1

4pTt
1 i

mN

2pTD , ~59!

wherec8(z) is the derivative of digamma function, Re th
real part, andT0[T0(Q0) is the temperature of the transitio
in the clean case. According to Ref. 6,

T05
r svH

4pA2
F lnS 11

c

r s
D2

c

A21r s
G , ~60!

wherec51/(A2r 0)'0.3, and the transition temperatureT0
is determined by the characteristic Coulomb energye2/Rc

5r svH /A2!vH .
Equation ~59! contains the chemical potentialmN mea-

sured from theNth Landau level that, together with the tem
peratureT and the broadening of Landau levels 1/2t, deter-
mines the filling factornN5n22N of the partially filled
highest Landau level. However, in order to find this relati
one needs to know the density of states in the system.
question about the density of states is a very subtle27 and
beyond the scope of the present paper. For this we use
chemical potentialmN rather than filling factornN .

Equation~59! can be solved analytically in the two ex
treme cases: when temperatureT is closed to the temperatur
T0 of instability in the absence of disorder, and when t
temperatureT is close to zero.

In the first case, the broadening of the Landau level 1t
and the chemical potentialmN are small compared to th
temperatureT0 of the instability in the clean case, and ther
fore the leading order expansion in powers of 1/T0t and
mN /T0 is legitimate. It appears that the presence of disor
decreases the temperature of instability linearly:
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T

T0
512

7z~3!

p3T0t
2

mN
2

4T0
2

,
1

2t
,mN!T0 . ~61!

In the opposite caseT!T0, Eq. ~59! reduces to

T

T0
5

4A3

p2 A12
p

8T0t
2

p2mN
2

16T0
2

, A12
p

8T0t
!1,

mN

T0
!1.

~62!

We see from Eq.~62! that the second-order phase transiti
into the CDW state can occur only if the broadening 1/2t of
the Landau level is smaller than the critical value 1/2tc(mN),
which depends on the chemical potentialmN . The maximal
value of 1/tc(mN) is reached atmN50 and equals

1

tc
5

8T0

p
. ~63!

Equations~61! and~62! shows that, provided the broadenin
of the Landau level 1/2t is smaller than the critical one
1/2t,1/2tc , the region of existence of the CDW state o
the phase diagram in the disordered case is smaller as c
pared to the clean case.

B. Half filled Landau level „nNÄ1Õ2…

We now consider the case of the half filledNth Landau
level (nN51/2), that is related to the recent experiments.9 In
this case the chemical potential is zero,mN50, provided the
density of states is symmetric around the center of theNth
Landau level. As follows from Eq.~59!, the temperature of
the second-order phase transition for this case can be fo
from the equation

T

T0
5

2

p2
zS 2,

1

2
1

1

4pTt D , ~64!

where z(2,z)5(m50
` (m1z)22 is the generalized Rieman

zeta function. The analytical solutions of this equation in t
cases of high and low temperatures can be obtained f
Eqs.~61! and~62! by puttingmN to zero. The entire behavio
of the solution~spinodal line!, obtained numerically from
Eq. ~64!, is shown in Fig. 4.

We mention that atnN51/2 the coefficienta3 vanishes
due to the particle-hole symmetry. This means that the tr
sition from the normal state into the CDW state is of t
second order for both cases of unidirectional and triangu
lattice symmetry. Therefore, to find the structure of the CD
state, one has to take into account the fourth-order term
the Landau expansion. In the vicinity of the spinodal line
follows from Eqs.~51! and ~56! with mN50 that

a45
12T0

3

p4T3
@27z~4,u!112F0~u!16F2~u!18FA3~u!#

~65!

and
8-7
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b45
2T0

3

p4T3
@23z~4,u!14F0~u!12F2~u!#, ~66!

where we introduce the new variableu51/211/4pTt and
the new function

FaS 1

2
1zD5

1

z2J 0
2~ar0!

FzS 2,
1

2
1zD

2
1

zJ0~ar0!
Im cS 1

2
1z1 izJ0~ar0! D G

~67!

with Im being the imaginary part. With these expressions
can minimizeF t,u with respect to the order parameterD and
find that the unidirectional CDW state has lower free ener
Therefore, at a half filled Landau level,nN51/2, and 1/t
,1/tc , the transition takes place from the liquid state in
the unidirectional CDW state. We will compare these resu
with the experimental ones in Sec. V A.

C. Phase diagram at zero temperature

In this section we analyze the zero-temperature phase
gram in the case where the Landau level broadening is c
to its critical value 1/2tc54T0 /p. Under these conditions
the CDW order parameterD is small, and one can use th
Landau expansions~46! and ~54! at zero temperature. Th
coefficients of these expansions are

a253S 12
8T0t

p
H1~mNt! D , a352pS 8T0t

p D 2

H2~mNt!,

~68!

and

a453p2S 8T0t

p D 3

H3~mNt,QRc! ~69!

FIG. 4. Phase diagram atnN51/2. The spinodal line obtained
from Eq. ~64! is shown by the solid line. The triangles and rhom
are the experimental data after Ref. 9.
15532
e
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for the triangular CDW state, and

b25
a2

3
, b45

p2

2 S 8T0t

p D 3

H4~mNt,QRc! ~70!

for the unidirectional CDW state. Here we introduce fo
functionsHi(z) as

H1~z!5
1

114z2
, H2~z!54zH1~z!, ~71!

H3~z,r !5
1

2

108z225

~114z2!3
13R0~z,r !12R1~z,r !1

1

2
R2~z,r !

12RA3~z,r !, ~72!

and

H4~z,r !5
28z221

~114z2!3
12R0~z,r !1R2~z,r !, ~73!

where

Ra~z,r !5
2H1~z!

J 0
2~ar !

2
1

J 0
3~ar !

arctan
2J0~ar !

114z22J 0
2~ar !

.

~74!

As a result, the instability line obeys the equation

p

8T0t
5H1~mNt!, ~75!

which is the zero temperature limit of Eq.~59!. In the case of
a small chemical potentialmN!T0, the solution of Eq.~75!,

p

8T0t
512

p2

16

mN
2

T0
2

, mN!T0 , ~76!

follows from Eq.~62! at T50.
The line of the first-order transition from the liquid to th

triangular CDW state is determined by the following equ
tion:

p

8T0t
5H1~mNt!1

H2
2~mNt!

9H3~mNt,QRc!
. ~77!

As before, the maximum of the solutions 1/t(Q) of Eq. ~77!
with respect toQ should be found. It appears that the max
mum is not exactly atQ5Q0 as in the clean case,8 but at
some shifted value Q01dQ with the shift dQ5
20.003(mN /T0)2Rc

21 for small chemical potentialmN

!T0. The existence of the shift is a feature of the disorde
case. Below in the limitmN!T0, we will neglect this shift.
In this case Eq.~77! can be written as

p

8T0t
5120.45

mN
2

T0
2

, mN!T0 . ~78!

By comparing the free energies of the triangular and
unidirectional CDW states, we can find the line of the fir
order transition between them
8-8
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p

8T0t
5H12

H2
2@2H31H4#@3H41AH4

212H3H4#

2H3~2H323H4!2
.

~79!

For the casemNt!1, Eq. ~79! can be simplified as

p

8T0t
5122.84

mN
2

T0
2

, mN!T0 . ~80!

For other values ofmN /T0, Eqs.~75!, ~77!, and~79! were
solved numerically. The results are shown in Fig. 5. Th
results show that for a fixed value of the chemical poten
mNÞ0 and decreasing disorder parameterp/8T0t, the elec-
tron system undergoes first the transition from the liq
state into the triangular CDW state and then into the un
rectional CDW state. We should mention, however, that t
statement is proven only for small values of the chemi
potential mN!T0 and for values of the disorder paramet
p/8T0t close to unity. Outside of this region, the CDW ord
parameter is not small, and hence we go beyond the app
bility of the Landau expansion. Nevertheless, the topology
the phase diagram should remain the same.

IV. WEAK CRYSTALLIZATION CORRECTIONS

The CDW order parameterD(r ) introduced in Eq.~5! can
be thought of as a saddle-point solution for the plasmon fi
that appears in the Hubbard-Stratonovich transformation
the electron-electron interaction in the action~2!. The Lan-
dau expansions~46! and~54! for the free energy of the CDW
states were derived under the assumption that one can
glect the fluctuations of the CDW order parameter. This
legitimate forN@1 and not very close to the transition~out-
side the critical region!. However, when one approaches t
instability line, the fluctuations of the CDW order parame
increase. To analyze the effects of the order-parameter
tuation, we introduce, following the original ideas
Brazovski,28 the fluctuations of the CDW order paramet
D(r )→D(r )1d(r ) in the Landau expansion of the free e

FIG. 5. Phase diagram at zero temperature nearnN51/2. The
solid line is obtained from Eq.~77!, the dashes are the instabilit
line ~75! and the dots are obtained from Eq.~79!.
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ergy and average over the fluctuationsd(r ). We present be-
low the results of the corresponding analysis only for t
most interesting case of the half filled Landau level.

We find that the transition from the liquid to the unidire
tional CDW state becomes of the first order, and takes pl
at the lower temperature that can be found from the follo
ing equation@see Eq.~64! for comparison#:

T

T0
5

2

p2
zS 2,

1

2
1

1

4pTt D2gS 1

4pTt DN22/3, ~81!

Here functiong(z) is defined as

g~z!53F3pr 0

16 G2/3Fl0
2~z!

f ~z!
G2/3F2l0~z!1l2~z!

4l0~z!2l2~z!G
1/3

, ~82!

where we introduce the following three functions:

f ~z!5
2

p2 Fb1zS 2,
1

2
1zD1b2z2zS 4,

1

2
1zD G , ~83!

la~z!5
2

p4 F2zS 4,
1

2
1zD12FaS 4,

1

2
1zD G , ~84!

The constantsb i are given by

b15
T08~Q0!

T0~Q0!
'2.58, b25@J 08~Q0!#2'0.27, ~85!

and functionFa is defined by Eq.~68!.
We mention that the functionp2g(z)/2z(2,1/21z) de-

creases monotonically from the value 0.35 atz50 to zero at
z→`. Therefore we obtain the following inequality for th
shift dT of the mean-field transition temperatureT:

dT

T
<3S pr 0

16Ab1
D 2/3

N22/3, N@1, ~86!

the equality corresponds to the clean case.
The appearance of a noninteger power in Eq.~81! results

from the fact that the momentum dependence of the corr
tion function for the order-parameter fluctuations conta
(Q2Q0)2 rather thanQ2 ~see Ref. 28!.

Equation~81! was derived under the assumption that t
main contribution in the momentum space comes from
regionQ'Q0. This assumption is justified under the follow
ing condition:28

gS 1

4pTt D
r 0

2f S 1

4pTt D !N2/3. ~87!

The combination of functions in the left-hand side of i
equality~87! decreases monotonically from 0.023 to 0 wh
z increases from zero to infinity and hence the condition~87!
holds.
8-9
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According to Eq.~86!, the fluctuations reduce the trans
tion temperature by the amount of the order ofN22/3!1 and
therefore in the considered case of the weak magnetic
(N@1) their effects can be neglected. These results indic
that the critical region for the considered transition is inde
small, and the mean-field approach gives a good approxi
tion for N@1.

As the Landau level indexN decreases, the fluctuations
the order parameter around the mean-field solution bec
important, see Eq.~86!. In this regime, detailed microscop
cal calculations are hardly possible due to the absence
successive microscopic theory. One can, however, make
dictions for the effect of disorder on the phase diagram
the basis of a phenomenological elastic theory14 described by
an effective Hamiltonian for the fluctuations of the displac
ment field associated with the translational symmetry bre
ing. The parameters of the Hamiltonian are phenomenol
cal constants, which, for the reasons discussed above, ca
be calculated microscopically. Our microscopic approach
therefore a complementary one, that is valid in the limit
small fluctuations of the order parameter, i.e.,N@1.

V. DISCUSSIONS

A. Comparison with experimental results

Now we discuss the possible applications of our theory
the recent experiments. Although our mean-field theory w
derived for the case of a large number of the occupied L
dau levelN@1, and neglects corrections of the order of 1/N,
while experimentally one hasN52,3,4, we, however, expec
that Eq.~59! gives a good estimation for the temperature
the transition from the liquid to the CDW state, even forN
52,3,4. We have complementary assurance that it can re
be the case because Eq.~59! can be obtained without intro
ducing the CDW order parameter and considering the me
field theory but as the equation that determines the temp
ture T(Q) at which the two-particle vertex function at wav
vectorQ diverges.29

We restrict ourselves by discussion of the experime
without an in-plane magnetic field.9,10The theory for the half
filled highest Landau level contains two physical paramet
the temperatureT0 and the broadening of the Landau lev
1/2t. According to Eq.~60!, in the absence of a disorder an
in a wide range of the parameterr s , the transition tempera
ture T0 can be estimated as

T0.0.008vH , 0.1,r s,1. ~88!

We can estimate the broadening 1/2t of the Landau level
from the mobilitym0 at zero magnetic field. With the help o
Eq. ~20!, we obtain

1

t
.

A2N

p
A e

m0ne
vH , ~89!

wherene is the density of the two-dimensional electron ga
The results obtained in Sec. III B impose the restricti

on the value of the sample mobilitym0 at zero magnetic
field. In order to observe the CDW states at the partia
filled Landau level with indexN the mobility at zero mag-
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netic field should satisfy the conditionm0.0.55
3103eN/ne . For typical values of the electron density of th
two-dimensional electron gas,ne.1011 cm22, we can obtain
the following estimate:m0.N3106 cm2/V s.

In the experiments of Lillyet al.,9 the samples were rela
tively clean,m0.93106 cm2/V s, and the electron densit
ne'2.6731011 cm22. At the temperatureT5150 mK, they
detected an anisotropy in the resistance only in the half fi
N52 Landau level, whereas for higher Landau levels,N
.2, the resistance remains isotropic. As the temperature
creases below 150 mK, the anisotropy in the resistanc
half filling appears in higher Landau levels. At the tempe
tureT525 mK, substantial anisotropy was already observ
in the half filledN52,3,4 Landau levels. We plot the exper
mental data from Ref. 9 in Fig. 4 by using Eqs.~88! and~89!.
We also assume that Eq.~88! remains valid even forN
52,3,4, and 5. As it can be seen, the behavior of the tra
tion line is in the agreement with the experimental data:
anisotropy in electronic transport atT5150 mK exists only
for N52 Landau level, while atT525 mK it exists forN
52,3, and 4, but not forN55, where the disorder induce
transition from the CDW state into the isotropic liquid sta
takes place. It should be mentioned that when the transi
temperature be independent on the disorder, the anisotrop
the resistance atT525 mK should remain up toN512, as
can be seen from Eqs.~88! and ~89!. Therefore the role of
disorder is very important.

The quantitative agreement of our theory with the expe
mental data is surprisingly good. In our approach, we tr
the disorder as a short-range random potential with the
relation length much smaller than the magnetic lengthl H . In
the experimental samples, however, the disorder poten
has long-range correlations. Therefore our theory can p
vide in this case only a qualitative picture. A thorough stu
of the effects of a long-range disorder on the phase diag
cannot be performed within the considered self-consis
Born approximation scheme and goes beyond the scope
the present paper.

B. Comparison with numerical results

The problem of the formation of the CDW state on t
second Landau level withnN51/2 at zero temperature in th
presence of a quenched disorder was studied numerical
Ref. 30. The system of 12 electrons interacting via the C
lomb interaction U(q)52pe2/q in the presence of the
quenched disorder was projected on the second Landau
(N52). The effects of interactions with electrons on t
other Landau level was not taken into account. The sys
was diagonalized numerically. It was found that the CD
state transforms into the liquid state as the dimension
disorder strengthvHAnL/2prt0 exceeds 0.12.

In order to be able to compare the results of the presen
above mean-field theory with the numerical results, we p
form the evaluation of the temperatureT0 in the case for
which the numerical results were obtained~instead screened
interaction~3! we useU(q)52pe2/q). Under this circum-
stances our theory gives the value 0.14.
8-10
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The small discrepancy may be attributed to two facto
on the one hand, the finite number of electrons in numer
calculations and, on the one hand, unsufficiency of
Hartree-Fock approximation for the problem with the Co
lomb interaction U(q)52pe2/q. In the latter case one
should take into account the diagrams beyond the Hart
Fock theory. Nevertheless, the comparison demonstrates
such corrections are small.

We emphasize that our theory which takes into acco
the screening of electron-electron interaction by electrons
the other Landau levels gives much smaller value 0.01 of
dimensionless disorder strength for the transition from
liquid state to the CDW state.

VI. CONCLUSIONS

For the system of a two-dimensional interacting electro
in the presence of a weak disorder and a weak magnetic fi
we investigated the effect of disorder on the existence of
mean-field CDW states in the framework of the Hartree-Fo
approximation. In the considered case of large filling fact
n@1, we obtained that the mean-field CDW instability e
ists if the disorder is rather weak, 1/t<8T0 /p. We found
that at half filling the unidirectional CDW state appears, a
the presence of disorder does not change the vector o
CDW. Near half filling, the unidirectional CDW state is e
ergetically more favorable than the triangular one. We
tained that the weak crystallization corrections to the me
field result are of the order of (1/n)2/3!1 and thus can be
neglected. We discussed the applications of our theory to
recent experimental and numerical results.
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APPENDIX: INSTABILITY VECTOR

In this appendix we prove that the weak disorder does
change the vector at which the instability towards the form
tion of the CDW state grows. Let us consider the soluti
T1dT of Eq. ~57! for the vectorQ5Q01dQ, wheredQ
!Q0. We will now show that the shiftdT is always nega-
tive, and hence the maximal instability temperature cor
sponds to the vectorQ5Q0, as it is in the clean case.

For a small deviationdQ we can write

T0~Q!5T0@12b1~dQRc!
2#, J 0

2~QRc!5b2~dQRc!
2.

~A1!

The shiftdT results in the substitution

jn→jn2
dT

4pT2t
2 i

dTm

2pT2
, ~A2!

in Eq. ~57!, and we obtain

dT

T
52~dQRc!

2)
b1g21b2z2g4

g222~zg31yg3!
, ~A3!

where z51/4pTt and y5m/2pT. Here we introduce the
four functionsga(z,y) andga(z,y),

ga~z,y!5Re(
n50

`

jn
2a , ga~z,y!5Im(

n50

`

jn
2a . ~A4!

It can be easily seen that the right-hand side of Eq.~A3! is
negative for all possible values ofz andy.
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