2,847 research outputs found

    The NNLO non-singlet QCD analysis of parton distributions based on Bernstein polynomials

    Get PDF
    A non-singlet QCD analysis of the structure function xF3xF_3 up to NNLO is performed based on the Bernstein polynomials approach. We use recently calculated NNLO anomalous dimension coefficients for the moments of the xF3xF_3 structure function in νN\nu N scattering. In the fitting procedure, Bernstein polynomial method is used to construct experimental moments from the xF3xF_3 data of the CCFR collaboration in the region of xx which is inaccessible experimentally. We also consider Bernstein averages to obtain some unknown parameters which exist in the valence quark densities in a wide range of xx and Q2Q^2. The results of valence quark distributions up to NNLO are in good agreement with the available theoretical models. In the analysis we determined the QCD-scale ΛQCD,Nf=4MSˉ=211\Lambda^ {\bar{MS}}_{QCD, N_{f}=4}=211 MeV (LO), 259 MeV (NLO) and 230 MeV (NNLO), corresponding to αs(MZ2)=0.1291\alpha_s(M_Z^2)=0.1291 LO, αs(MZ2)=0.1150\alpha_s(M_Z^2)=0.1150 NLO and αs(MZ2)=0.1142\alpha_s(M_Z^2)=0.1142 NNLO. We compare our results for the QCD scale and the αs(MZ2)\alpha_s(M_Z^2) with those obtained from deep inelastic scattering processes.Comment: 20 pages, 7 figures, published in JHE

    Effect of Nuclear Quadrupole Interaction on the Relaxation in Amorphous Solids

    Full text link
    Recently it has been experimentally demonstrated that certain glasses display an unexpected magnetic field dependence of the dielectric constant. In particular, the echo technique experiments have shown that the echo amplitude depends on the magnetic field. The analysis of these experiments results in the conclusion that the effect seems to be related to the nuclear degrees of freedom of tunneling systems. The interactions of a nuclear quadrupole electrical moment with the crystal field and of a nuclear magnetic moment with magnetic field transform the two-level tunneling systems inherent in amorphous dielectrics into many-level tunneling systems. The fact that these features show up at temperatures T<100mKT<100mK, where the properties of amorphous materials are governed by the long-range R3R^{-3} interaction between tunneling systems, suggests that this interaction is responsible for the magnetic field dependent relaxation. We have developed a theory of many-body relaxation in an ensemble of interacting many-level tunneling systems and show that the relaxation rate is controlled by the magnetic field. The results obtained correlate with the available experimental data. Our approach strongly supports the idea that the nuclear quadrupole interaction is just the key for understanding the unusual behavior of glasses in a magnetic field.Comment: 18 pages, 9 figure

    On the stability and spectrum of non-supersymmetric AdS(5) solutions of M-theory compactified on Kahler-Einstein spaces

    Full text link
    Eleven-dimensional supergravity admits non-supersymmetric solutions of the form AdS(5)xM(6) where M(6) is a positive Kahler-Einstein space. We show that the necessary and sufficient condition for such solutions to be stable against linearized bosonic supergravity perturbations can be expressed as a condition on the spectrum of the Laplacian acting on (1,1)-forms on M(6). For M(6)=CP(3), this condition is satisfied, although there are scalars saturating the Breitenlohner-Freedman bound. If M(6) is a product S(2)xM(4) (where M(4) is Kahler-Einstein) then there is an instability if M(4) has a continuous isometry. We show that a potential non-perturbative instability due to 5-brane nucleation does not occur. The bosonic Kaluza-Klein spectrum is determined in terms of eigenvalues of operators on M(6).Comment: 21 pages. v2: Includes SU(4) quantum numbers for CP3 case, typos fixed, refs adde

    Percutaneous Cervical Vertebroplasty in a MultifunctionalImage-Guided Therapy Suite: Hybrid Lateral Approach to C1 andC4 Under CT and Fluoroscopic Guidance

    Get PDF
    A 76-year-old patient suffering from two painful osteolytic metastases in C1 and C4 underwent percutaneous vertebroplasty by a hybrid technique in a multi-functional image-guided therapy suite (MIGTS). Two trocars were first placed into the respective bodies of C1 and C4 under fluoroscopic computed tomography guidance using a lateral approach. Thereafter, the patient was transferred on a moving table to the digital subtraction angiography unit in the same room for implant injection. Good pain relief was achieved by this minimally invasive procedure without complications. A hybrid approach for vertebroplasty in a MIGTS appears to be safe and feasible and might be indicated in selected cases for difficult accessible lesion

    Evaluation of the isospin asymmetry of the nucleon structure functions with CLAS++

    Full text link
    The possibility to estimate the isospin symmetry breaking effects in the non-perturbative part of F_2 structure function of the chargeg lN deep-pnelastic scattering, which will provide CLAS++ dewtector of the upgraded TJNAF machine at Q22GeV2Q^2\approx 2 GeV^2, is discussed. The problems of the Gottfried sum rule extraction are also considered.Comment: 5 pages, 4 figures, presented at BARYONS04 Conference, Palaiseau, France, October 2004, submitted to the Proceedings

    Thermal shape fluctuation effects in the description of hot nuclei

    Full text link
    The behavior of several nuclear properties with temperature is analyzed within the framework of the Finite Temperature Hartree-Fock-Bogoliubov (FTHFB) theory with the Gogny force and large configuration spaces. Thermal shape fluctuations in the quadrupole degree of freedom, around the mean field solution, are taken into account with the Landau prescription. As representative examples the nuclei 164^{164}Er, 152^{152}Dy and 192^{192}Hg are studied. Numerical results for the superfluid to normal and deformed to spherical shape transitions are presented. We found a substantial effect of the fluctuations on the average value of several observables. In particular, we get a decrease in the critical temperature (TcT_c) for the shape transition as compared with the plain FTHFB prediction as well as a washing out of the shape transition signatures. The new values of TcT_c are closer to the ones found in Strutinsky calculations and with the Pairing Plus Quadrupole model Hamiltonian.Comment: 17 pages, 8 Figure

    Conserving and Gapless Approximations for an Inhomogeneous Bose Gas at Finite Temperatures

    Full text link
    We derive and discuss the equations of motion for the condensate and its fluctuations for a dilute, weakly interacting Bose gas in an external potential within the self--consistent Hartree--Fock--Bogoliubov (HFB) approximation. Account is taken of the depletion of the condensate and the anomalous Bose correlations, which are important at finite temperatures. We give a critical analysis of the self-consistent HFB approximation in terms of the Hohenberg--Martin classification of approximations (conserving vs gapless) and point out that the Popov approximation to the full HFB gives a gapless single-particle spectrum at all temperatures. The Beliaev second-order approximation is discussed as the spectrum generated by functional differentiation of the HFB single--particle Green's function. We emphasize that the problem of determining the excitation spectrum of a Bose-condensed gas (homogeneous or inhomogeneous) is difficult because of the need to satisfy several different constraints.Comment: plain tex, 19 page
    corecore