900 research outputs found

    Constraining the primordial spectrum of metric perturbations from gravitino and moduli production

    Get PDF
    We consider the production of gravitinos and moduli fields from quantum vacuum fluctuations induced by the presence of scalar metric perturbations at the end of inflation. We obtain the corresponding occupation numbers, up to first order in perturbation theory, in terms of the power spectrum of the metric perturbations. We compute the limits imposed by nucleosynthesis on the spectral index nsn_s for different models with constant nsn_s. The results show that, in certain cases, such limits can be as strong as ns<1.12n_s<1.12, which is more stringent than those coming from primordial black hole production.Comment: 16 pages, LaTeX, 5 figures. Corrected figures, new references included. Final version to appear in Phys. Rev.

    Numerical simulation of nonunitary gravity-induced localization

    Full text link
    The localization of a quantum state is numerically exhibited in a nonunitary Newtonian model for gravity. It is shown that an unlocalized state of a ball of mass just above the expected threshold of 10^11 proton masses evolves into a mixed state with vanishing coherences above some localization lengths.Comment: RevTex, 6 figures available on request from the authors To appear in Physica

    Possible astrophysical signatures of heavy stable neutral relics in supergravity models

    Get PDF
    We consider heavy stable neutral particles in the context of supergravity and show that a gravitationally suppressed inflaton decay can produce such particles in cosmologically interesting abundances within a wide mass range 103GeV≤mX≤1011GeV10^3 {\rm GeV} \leq m_X \leq 10^{11} {\rm GeV}. In gravity-mediated supersymmetry breaking models, a heavy particle can decay into its superpartner and a photon-photino pair or a gravitino. Such decays only change the identity of a possible dark matter candidate. However, for 103GeV≤mX≤107GeV10^3 {\rm GeV} \leq m_X \leq 10^7 {\rm GeV}, astrophysical bounds from gamma-ray background and photodissociation of light elements can be more stringent than the overclosure bound, thus ruling out the particle as a dark matter candidate.Comment: 12 page

    Is nonperturbative inflatino production during preheating a real threat to cosmology?

    Get PDF
    We discuss toy models where supersymmetry is broken due to non-vanishing time-varying vacuum expectation value of the inflaton field during preheating. We discuss the production of inflatino the superpartner of inflaton due to vacuum fluctuations and then we argue that they do not survive until nucleosynthesis and decay along with the inflaton to produce a thermal bath after preheating. Thus the only relevant remnant is the helicity \pm 3/2 gravitinos which can genuinely cause problem to nucleosynthesis.Comment: 10 pages, Updates to match the accepted version in Phys. Rev.

    On Yukawa quasi-unification with mu<0

    Full text link
    Although recent data on the muon anomalous magnetic moment strongly disfavor the constrained minimal supersymmetric standard model with mu<0, they cannot exclude it because of theoretical ambiguities. We consider this model supplemented by a Yukawa quasi-unification condition which allows an acceptable b-quark mass. We find that the cosmological upper bound on the lightest sparticle relic abundance is incompatible with the data on the branching ratio of b-->s gamma, which is evaluated by including all the next-to-leading order corrections. Thus, this scheme is not viable.Comment: 4 pages including 3 figures, Revte

    Production and decay of the Standard Model Higgs Bososn at LEP200

    Full text link
    We collect and update theoretical predictions for the production rate and decay branching fractions of the Standard Model Higgs boson that will be relevant for the Higgs search at LEP200. We make full use of the present knowledge of radiative corrections. We estimate the systematics arising from theoretical and experimental uncertainties.Comment: 27 page

    Measurement of the gluon PDF at small x with neutrino telescopes

    Get PDF
    We analyze the possibility that neutrino telescopes may provide an experimental determination of the slope lambda of the gluon distribution in the proton at momentum fractions x smaller than the accelerator reach. The method is based on a linear relation between lambda and the spectral index (slope) of the down-going atmospheric muon flux above 100 TeV, for which there is no background. Considering the uncertainties in the charm production cross section and in the cosmic ray composition, we estimate the error on the measurement of lambda through this method, excluding the experimental error of the telescopes, to be ~ +/- 0.2Comment: 16 pages with 16 figures - new version, comments added, same results and figure

    Higher twists and αs(MZ)\alpha_s(M_Z) extractions from the NNLO QCD analysis of the CCFR data for xF3xF_3 structure function

    Full text link
    A detailed next-to-next-to-leading order (NNLO) QCD analysis is performed for the experimental data of the CCFR collaboration for the xF3xF_3 structure function. Theoretical ambiguities of the results of our NNLO fits are estimated by application of the Pad\'e resummation technique and variation of the factorization and renormalization scales. The NNLO and N3^3LO αs(Q2)\alpha_s(Q^2) MSˉ\bar{MS}-matching conditions are used. In the process of the fits we are taking into account of twist-4 1/Q21/Q^2-terms. We found that the amplitude of the xx-shape of the twist-4 factor is decreasing in NLO and NNLO, though some remaining twist-4 structure seems to retain in NNLO in the case when statistical uncertainties are taken into account. The question of the stability of these results to the application of the [0/2] Pad\'e resummation technique is considered. Our NNLO results for αs(MZ)\alpha_s(M_Z) values, extracted from the CCFR xF3xF_3 data, are αs(MZ)=0.118±0.002(stat)±0.005(syst)±0.003(theory)\alpha_s(M_Z)=0.118 \pm 0.002 (stat) \pm 0.005 (syst)\pm 0.003 (theory) provided the twist-4 contributions are fixed through the infrared renormalon model and αs(MZ)=0.1210.010+0.007(stat)±0.005(syst)±0.003(theory)\alpha_s(M_Z)=0.121^{+0.007}_{0.010}(stat)\pm 0.005 (syst) \pm 0.003 (theory) provided the twist-4 terms are considered as free parameters.Comment: 33 pages LaTeX, 3 ps figures; minor misprints are eliminated, 2 new referencies are added; accepted for publication in Nucl. Phys.

    Reconstructing Sparticle Mass Spectra using Hadronic Decays

    Get PDF
    Most sparticle decay cascades envisaged at the Large Hadron Collider (LHC) involve hadronic decays of intermediate particles. We use state-of-the art techniques based on the \kt jet algorithm to reconstruct the resulting hadronic final states for simulated LHC events in a number of benchmark supersymmetric scenarios. In particular, we show that a general method of selecting preferentially boosted massive particles such as W, Z or Higgs bosons decaying to jets, using sub-jets found by the \kt algorithm, suppresses QCD backgrounds and thereby enhances the observability of signals that would otherwise be indistinct. Consequently, measurements of the supersymmetric mass spectrum at the per-cent level can be obtained from cascades including the hadronic decays of such massive intermediate bosons.Comment: 1+29 pages, 12 figure
    • …
    corecore