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Abstract 9 

Hypothesis 10 

Polysaccharides such as kappa carrageenan are often utilised in fat replacement techniques 11 

in the food industry. However, the structural role they can provide within a product is 12 

limited by their hydrophilic nature. Hydrophilic particles can be surface-activated by 13 

hydrophobic modification e.g. in-situ interaction with a surfactant. This can drastically 14 

improve foam stability by providing a structural barrier around bubble interfaces offering 15 

protection against disproportionation and coalescence. Hence, it should be possible to bind 16 

negatively charged kappa carrageenan particles with a cationic surfactant through 17 

electrostatic interaction, in order to alter their surface properties. 18 

Experiments 19 

Lauric arginate was mixed with kappa carrageenan microgel particles at various 20 

concentrations and the potential electrostatic interaction was studied using zeta potential, 21 

turbidity and rheological measurements. Mixtures were then aerated and foaming 22 

properties explored, in particular the location of the particles. 23 

Findings  24 
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Lauric arginate was successfully bound to kappa carrageenan microgel particles. 25 

Consequently, particles were surface-activated and adsorbed at the air/water interface, as 26 

shown by optical and confocal microscopy. Foam half-life peaked at an intermediate 27 

surfactant concentration, where there was sufficient surfactant to coat particle surfaces but 28 

the concentration was low enough to prevent the formation of large aggregates unable to 29 

adsorb at the a/w interfaces. 30 

Keywords 31 

Microgel 32 

Fluid gel 33 

Particles 34 

Biopolymer 35 

Surface-activation 36 

Foam 37 

Pickering stabilization  38 
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1 Introduction 39 

Aqueous foams are thermodynamically unstable systems, which collapse via liquid drainage, 40 

disproportionation and coalescence. Surfactants provide limited stability against these 41 

mechanisms by lowering the surface tension [1]. Foam stability can be dramatically 42 

improved via the adsorption of particles to the air/water (a/w) interface, termed Pickering 43 

stabilisation [2], which provides a structural barrier to coalescence and disproportionation 44 

[3]. Particles need to have intermediate hydrophobicity and be partially wetted in order to 45 

adsorb at an interface. Hydrophilic particles therefore need to be modified, typically either 46 

by chemical modification or in situ modification with surfactants. There are many examples 47 

of particle-surfactant combinations used to stabilise foams in the literature, a few of which 48 

are: laponite clay particles with hexylamine [4], alkylammonium bromides [5] or CTAB [6], 49 

alumina particles with short chain carboxylic acids [7] and calcium carbonate particles with 50 

SDS [8]. However, none of these combinations are suitable for food-grade systems. There 51 

are several reviews on food-grade particles for Pickering stabilisation but these mainly focus 52 

on emulsion systems [9-11] and those that do investigate foams [12, 13] have generally not 53 

studied particle-surfactant combinations. Recently however, Binks, Muijlwijk [14] have 54 

studied the modification of calcium carbonate particles with various anionic surfactants for 55 

potential use in food systems. The modification of hydrophilic particles using surfactants in-56 

situ is therefore an exciting emerging area of research for the food industry, which is only 57 

just starting to be utilised. 58 

 59 

One of the major challenges facing the food industry is the increasing Government and 60 

consumer pressure to reduce the levels of fat in food products. Diets high in fat, especially 61 

the saturated kind, can lead to high cholesterol and increase the risk of heart disease [15]. 62 
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Polysaccharides are commonly used in fat replacement techniques. As well as their low cost 63 

and high abundancy, they have the ability to structure water [16-18] and mimic the 64 

structural characteristics of oil droplets when in particulate form [19]. This has been enabled 65 

by the development of fluid gels; suspensions of gelled particles dispersed in a non-gelled 66 

continuous phase [20]. In addition, as many polysaccharides can be classified as vegan, their 67 

use in reduced fat systems is of strong interest to the food industry as the demand for vegan 68 

products escalates [21].  69 

 70 

However, the hydrophilic nature of polysaccharides limits their use in food product 71 

microstructure design. Hydrophobic modification and subsequent potential surface 72 

activation of polysaccharide particles would therefore significantly increase their 73 

functionality in such products, for example by enabling them to adopt a more important 74 

structural role (similar to that of fat droplets in whipped cream [22]). The majority of 75 

polysaccharides used in the food industry are anionic e.g. carrageenan, alginate, pectin and 76 

xanthan. A cationic surfactant would therefore be required for potential electrostatic 77 

interaction and subsequent surface-activation. Lauric arginate (LA) is one such surfactant, 78 

which has been approved as generally regarded as safe (GRAS) within the United States for 79 

certain food applications [23]. There are a small number of studies in the literature that 80 

focus on the interaction between LA and anionic biopolymers; Bonnaud, Weiss [24] describe 81 

a strong binding interaction between LA and anionic biopolymers pectin, alginate, 82 

carrageenan and xanthan, indicated by isothermal titration calorimetry. Asker, Weiss [25] 83 

suggest that the addition of pectin to mixed LA/Tween 20 micelles leads to the formation of 84 

electrostatic complexes that have potential applications as functional ingredients. However, 85 

to the best of the authors’ knowledge, this is the first study that investigates the potential 86 
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surface-activation of polysaccharide particles through binding of LA for use in aqueous 87 

foams. 88 

 89 

Kappa carrageenan (kC) was selected as the polysaccharide to study and was prepared in 90 

fluid gel form in order to create microgel particles. It was chosen because firstly, it is 91 

strongly negatively charged and so has a high potential for electrostatic interaction with LA 92 

and secondly, microgels have shown interesting interfacial behaviour, primarily the ability to 93 

deform upon adsorption to an interface. Microgels are an increasingly interesting area of 94 

research due to their vast potential as colloidal building blocks and stabilising agents due to 95 

their deformability, surface activity, reversible swelling behaviour and responsiveness to pH 96 

and temperature [26]. A number of studies have demonstrated the ability of microgels to 97 

adsorb to a fluid or a/w interface by diffusion-limited adsorption and subsequently deform 98 

in order to maximise exposure [27-30]. Furthermore, Dickinson [26] recently highlighted the 99 

significant, novel potential of biopolymer-based microgels to stabilise food emulsions and 100 

foams.   101 
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2 Materials and methods 102 

2.1 Materials 103 

Kappa carrageenan (22048) and Tween 20 (£3.0% impurities) were purchased from Sigma 104 

Aldrich (UK). Lauric Arginate was obtained in the form of Cytoguard LA 2X (A&B Ingredients, 105 

USA) in a liquid form with propylene glycol carrier and a 20% content of Lauric Arginate. All 106 

were used without further purification and concentrations were calculated as weight 107 

percentage.  108 

2.2 Preparation of fluid gel 109 

Kappa carrageenan (1 wt%) was dispersed in deionised water at room temperature, then 110 

heated to 70 °C. The solution was transferred into a cooled jacketed pin stirrer through a 111 

peristaltic pump at 70 °C. The outlet temperature was controlled to 5 °C to ensure gelation 112 

occurred under shear (gelation temperature » 25 °C). A retention time of 7.5 min was 113 

achieved through using a pump speed of 20 mLmin-1, resulting in a cooling rate of 8 °Cmin-1. 114 

The shaft rotation speed was set to 1500 rpm to give a narrow distribution of particle size 115 

[31]. Fluid gels were stored at 5 °C. 116 

2.3 Preparation of kC fluid gel-LA complexes 117 

1% kC fluid gel was diluted 1:1 with deionised water. LA at various concentrations was then 118 

added to the solution whilst stirring for 5 days at room temperature. 119 

2.4 Zeta potential measurements 120 

Zeta potential was determined using a Zetasizer (Malvern Instruments, UK) at 25 °C. kC fluid 121 

gel was diluted and its pH was altered from 1.5 to 10 using either NaOH or HCl of 1M 122 

concentrations. Complexes were measured at their natural pH. All data points were carried 123 

out in three replicates. 124 
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2.5 Turbidity measurements 125 

The turbidity of kC fluid gel-LA complexes was inferred from the absorbance at 600 nm 126 

using a UV-Vis spectrophotometer (Orion AquaMate, Thermoscientific, UK) in 1 cm cuvettes 127 

against deionised water. Measurements were carried out at 25 °C in three replicates.  128 

2.6 Rheology 155 

A Kinexus rheometer (Malvern Instruments, UK) was used to perform rheological 156 

measurements at 25 °C. kC fluid gel-LA complexes were tested after 24 h to ensure post-157 

production particle ordering completion [32, 33]. All measurements were conducted using a 158 

serrated parallel plate of 60 mm diameter set to a 1 mm gap. Amplitude sweeps were 159 

conducted at a frequency of 1 Hz as a function of applied oscillatory strain. All experiments 160 

were carried out in three replicates. 161 

2.7 Surface tension  162 

Surface tension measurements of kC fluid gel-LA complexes and LA solutions were 163 

performed using a Kruss GmbH K100 tensiometer (Hamburg, Germany). The Wihelmy plate 164 

method was used to measure static surface tension at an immersion depth of 2mm at 25 °C. 165 

Experiments were carried out in three replicates. The critical micelle concentration (CMC) 166 

was calculated as the concentration at which surface tension stopped decreasing (Figure 6), 167 

which was 0.15 wt% for LA solutions. This was similar to values reported in the literature: 168 

0.18-0.21 wt% [24, 34]. The slight difference may have been a result of a difference in the 169 

source of Lauric Arginate or in the method of obtaining CMC as isothermal titration 170 

calorimetry was used in the referenced literature.  171 

2.8 Aeration 172 

kC fluid gel-LA complexes of equal volumes were aerated using a Hobart mixing unit. The 173 

highest speed setting was used for 7 min as this ensured air fraction was high for all systems 174 
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(between 0.65-0.95: the wet foam boundary). Air fraction was determined to assess foam 175 

ability using Equation 1, by weighting equivalent volumes of fluid gel and foam, using three 176 

replicates. 177 

Air	fraction = 1 − ( /0123
/04567	894

)       Equation (1) 178 

Overall foam stability was measured using half-life measurements, that is the time taken to 179 

reduce the height of the foam by half. The reduction of the foam height was recorded using 180 

a CCD camera and the half-life was later calculated for three replicates (three separate 181 

batches). 182 

2.9 Liquid drainage and foam structure measurements  183 

Liquid drainage and bubble size measurements were conducted using a Krüss DFA100LCM 184 

foam analyser (Krüss, Germany). The kC fluid gel-LA mixture was poured into the foam cell 185 

to cover the reference electrode followed by the externally produced foam. The decrease in 186 

liquid fraction was then recorded using electrical conductivity measurements at 7 pairs of 187 

electrodes along the cell height. Drainage profiles were recorded at sensor 3 (positioned at 188 

half the foam height) for the first four hours from initial aeration. Bubble sizes were 189 

recorded using a high resolution camera at a similar foam height. Experiments were carried 190 

out in three replicates (three separate batches). 191 

2.10 Optical microscopy  192 

Aerated kC fluid gel-LA complexes were imaged using phase contrast microscopy (Leica 193 

Microsystems, UK). The sample was placed onto a microscope slide with a coverslip and 194 

observed using objective lenses up to 40x magnification.  195 



 9 

2.11 Confocal microscopy 196 

The microstructure of aerated kC fluid gel-LA complexes as well as kC fluid gel particles 197 

before complexation (1 wt% kC) were visualised using a confocal scanning laser microscope 198 

(Leica TCS SPE, Heidelberg, Germany). The kC fluid gel-LA complexes were aerated, placed 199 

onto a microscope slide and stained with 0.01 wt%  rhodamine B (Sigma Aldrich, Dorset UK). 200 

A coverslip was then placed over the sample and a laser operating at a wavelength of 532 201 

nm was used for imaging.   202 
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3 Results and Discussion 203 

3.1 Production and characterisation of kappa carrageenan fluid gel 204 

The gelling mechanism of kappa carrageenan (kC) is widely accepted as a thermally-205 

reversible coil-to-helix transition followed by helix aggregation in the presence of K+ ions 206 

[35]. During fluid gel preparation, this process occurs under shear resulting in the 207 

production of gel particles dispersed in a continuous phase, typically water [20]. The kC 208 

particles behave as soft microgel particles with penetrable “hairy” chains allowing for 209 

particle overlap and interaction [36]. A fluid gel was produced at 1 wt% by shearing a hot 210 

solution of kC whilst it underwent gelation in a cooled jacketed pin stirrer at a shaft rotation 211 

speed of 1500 rpm. Garrec, Guthrie [36] previously estimated the kC fluid gel particle 212 

volume fraction at 1 wt% as 0.65, here the fluid gel was diluted by half in order to study a 213 

less concentrated suspension. Unfortunately, the particles cannot be visualised using optical 214 

microscopy as the refractive index of kC is too close to that of the water continuous phase 215 

(1.334). However, particles could be imaged using confocal microscopy (Figure 1a), particle 216 

diameter appeared to be in the 10-50 µm range. 217 

 218 

The zeta (z) potential of a diluted 1% kappa carrageenan (kC) fluid gel was measured over a 219 

pH range. At natural pH (6.8), z-potential was -53.1 ± 2.9 mV (Figure 1b), indicating kC 220 

particles were strongly negatively charged. This can be attributed to their ester sulphate 221 

groups. z-potential remained constant over a wide pH range, only changing considerably at 222 

pH 1.5 where particles became less negatively charged due to protonation of kC under 223 

strong acidic conditions (Figure 1b). The z-potential of Lauric arginate (LA) at natural pH 224 

(2.3) was +23.8 ± 3.9 mV, which confirmed its positive charge (Figure 1b). The potential 225 
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electrostatic interaction between kC and LA was therefore investigated at their natural pH 226 

and as a function of LA concentration.  227 

 228 
Figure 1: (a) Confocal micrograph of diluted 1 wt% kC fluid gel particles at natural pH (6.8) dyed with rhodamine B. (b) Zeta 229 
potential measurements of diluted 1 wt% kC fluid gel ( ) over a pH range and of LA at natural pH ( ). 230 

 231 

3.2 Complex formation through surfactant binding  232 

LA was added at various concentrations to a diluted 1% kC fluid gel solution. Zeta potential, 233 

turbidity and rheological measurements were used to analyse the interaction. The z-234 

potential of kC particles were measured 24 h after production. At 0% LA, z-potential was -235 

53.1 ± 2.9 mV, reflecting its negatively charged ester sulphate groups. Upon increasing LA 236 

concentration, z-potential became increasing less negative until it reached zero at 0.15% LA 237 

(Figure 2). This suggests that monomers of LA were binding to kC particles reducing their 238 

negative charge and at 0.15% LA, sufficient surfactant had been added to neutralise the 239 

charge. The electrostatic interaction was facilitated by the cationic head group (L-arginine) 240 

of LA and the negatively charged sulphate groups of kC particles. It has often been reported 241 

in the literature that the z-potential of negatively charged particles mixed with cationic 242 

surfactants continued to increase with surfactant concentration after this charge 243 

neutralisation had occurred [5, 8, 37]. This was a result of a second layer of surfactant 244 

a b 
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adsorbing onto the initial monolayer through hydrophobic interactions. However, increasing 245 

the concentration of LA beyond 0.15% (to 0.2%) revealed a decrease in z-potential to -3.8 ± 246 

1.8 mV. A return to a negative z-potential suggests that a bilayer of surfactant cannot form 247 

and instead added surfactant is most likely residing in the continuous phase. 248 

 249 

Figure 2: Zeta potential measurements of kC fluid gel particles as a function of increasing LA concentration. Concentration 250 
is calculated as wt% of the total solution.  251 

 252 
Visible observations of kC fluid gel + LA solutions confirmed a change in their structure with 253 

increasing LA concentration (Figure 3a). Solutions increased in turbidity but remained 254 

homogenous in appearance until 0.1% LA. From 0.1% LA increasingly large aggregates were 255 

observed using optical microscopy, ranging from 100 µm to 300 µm in size. Turbidity was 256 

measured using a UV-Vis spectrophotometer to quantify these observations. Absorbance 257 

can be seen to increase linearly with LA concentration (Figure 3b). At 0.15% and 0.2% LA, 258 

the error bars in absorbance data were considerably larger, due to substantial aggregates 259 

observed in the solutions. This turbidity data provides further evidence of complex 260 
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formation, where an increase in turbidity (scattering of light by particles) corresponds to an 261 

increase in particle density, due to electrostatically bound surfactant. It is also clear that 262 

aggregation of the complexes occurred, especially at higher LA concentrations. This was 263 

caused by a reduction in particle charge, which led to less repulsion and therefore more 264 

intermolecular interactions between particles. This effect was heightened at 0.15% LA and 265 

0.2% LA as charge neutralisation of the complexes considerably limited their solubility. A 266 

similar trend was first observed by Bonnaud, Weiss [24] where turbidity initially increased at 267 

low concentrations of LA when mixed with iota-carrageenan, indicating the formation of 268 

complexes. Larger aggregates were then observed at concentrations of 0.03-0.23 wt% LA. 269 

 270 
Figure 3: (a) Photographs of solutions of kC fluid gel particles mixed with LA at various concentrations. (b) Absorbance of 271 
the same solutions, measured using a UV-Vis spectrophotometer. 272 

 273 
The bulk viscosity of foams affect the mobility of the continuous phase and therefore 274 

drainage velocity [38]. It is therefore essential to understand the rheological responses of 275 

these fluid gels to understand how they behave when aerated. The viscosity profiles of kC 276 

fluid gel complexes at various LA concentrations were measured (Figure 4a). The flow curves 277 

at all LA concentrations exhibited strongly shear thinning behaviour. This is typical of fluid 278 

a b 
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gels at low volume fractions, where they behave as highly aggregated suspensions 279 

dominated mainly by colloidal forces [39]. At higher volume fractions, particles behave as 280 

soft microgels where rheology is dependent on particle elastic modulus as well as particle-281 

particle interactions [32, 40]. From Figure 4a, at low shear rates a difference in fluid gel 282 

viscosity can be observed, where it increased with LA concentration. However at high shear 283 

rates, most fluid gels displayed a similar viscosity. This further confirms the difference in 284 

particle aggregation. Initially, particles were aggerated together to various extents, but upon 285 

shearing, the interactions between particles were broken and structures were similar. The 286 

flow curve of 0.2% LA was different at higher shear rates, where it appears to shear thicken 287 

at ~50 s-1, this was likely due to the larger aggregates jamming in the geometry. The 288 

viscoelastic behaviour of the fluid gels was measured using oscillatory rheological data 289 

(Figure 4b). At LA concentrations up to 0.1%, the loss modulus (G’’) dominated over the 290 

storage modulus (G’) indicating a more viscous response from the system. However, at 291 

0.15% and 0.2% LA, G’ was dominant, which reflects a more elastic response. These 292 

structures also exhibited a yield stress. Therefore, as aggregation of the particles increased 293 

due to increased surfactant binding, a network with gel-like properties began to form, 294 

leading to an eventual dominance in G’.  295 
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 296 

Figure 4: (a) shear viscosity of 1 wt% kC fluid gel mixed with LA at 0.025% ( ), 0.05% ( ), 0.075% ( ), 0.1% ( ), 0.15%       297 
( ) and 0.2% ( ). (b) storage modulus ( ) and loss modulus (  ) of 1 wt% kC fluid gel mixed with LA as a function of LA 298 
concentration.  299 

a 

b 
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3.3 Surface activity  300 

The functionality of LA as a surfactant depends on its ability to adsorb at the a/w interface, 301 

lowering the surface tension and stabilising the newly formed interface. In order to 302 

investigate the surface-activity of kC-LA complexes, equilibrium surface tension was 303 

measured and compared to that of pure surfactant solutions (Figure 5). The surface tension 304 

of pure LA solution decreased with concentration reaching a plateau at 0.15% LA with a 305 

value of 34.6 ± 0.07 mNm-1. This is therefore its critical micelle concentration (CMC); above 306 

this concentration, all additional surfactant monomers added to the system form micelles. 307 

The surface tension of the complexes were then measured as a function of LA concentration 308 

and compared to the pure surfactant solutions. The surface tension of pure kappa 309 

carrageenan was 43.4 ± 0.3 mNm-1 (Figure 5). Upon addition of LA, the surface tension 310 

quickly began to decrease until it plateaued at 35.0 ± 0.6 mNm-1 at 0.025% LA. It then 311 

appeared to increase slightly at 0.1% LA. This is thought to be a result of the formation of 312 

aggregates affecting the measurements. Above 0.1% LA, the aggregates increased in size 313 

resulting in unreliable measurements. In surfactant-particle systems, the surface tension is 314 

often lower than that of corresponding surfactant solutions [41]. It has been suggested that 315 

particles act as surfactant carriers, thus increasing the concentration of surfactant at the 316 

a/w interface [7] and that the size of the particles (dependent on individual systems) 317 

determines the extent to which the surface tension is lowered [42]. Particle-surfactant 318 

systems here exhibited similar surface tension values to the surfactant solutions (Figure 5). 319 

The aqueous conditions, as well as size and shape of the particles may have therefore not 320 

been optimal to cause a lowering of surface tension.  321 
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 322 

Figure 5: Surface tension measurements as a function of LA for pure LA solutions ( ) and kC-LA complexes (  ). 323 

3.4 Aeration of surface-activated kappa carrageenan fluid gels 324 

The ability of kC-LA complexes to incorporate air was determined using foam air fraction 325 

measurements and compared to those of pure surfactant solutions. Systems were aerated 326 

in a Hobart mixer for 7 minutes, which ensured that the air fraction was high. The air 327 

fraction of pure surfactant solutions quickly reached a constant of around 0.97 upon 328 

increasing LA concentration (Figure 6a). Foam capacity was high above and below the CMC 329 

suggesting the method of foaming allowed equilibrium surface tension to be reached. The 330 

air fraction of aerated kC-LA complexes followed a similar trend but values were slightly 331 

lower than those of the pure surfactant solutions (~ 0.86). This was likely a result of 332 

increased viscosity preventing the incorporation of as much air into the system. In addition, 333 

Lesov, Tcholakova [43] have reported that foam air volume is also dependent on the 334 

mechanism of stabilisation as well as solution viscosity, specifically the Pickering stabilised 335 

foams they studied had a lower air fraction when compared to surfactant-stabilised foams 336 
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of similar suspension viscosities. At 0.15% and more substantially, 0.2% LA, the air fraction 337 

decreased. This was likely an effect of high particle aggregation and increased particle 338 

density, as observed by turbidity and rheology measurements, which sterically hindered the 339 

action of the surfactant. In addition, it was likely dense particles bridged and consequently 340 

ruptured bubble interfaces as they were generated, preventing the growth of the foam 341 

structure.  342 

 343 

In order to investigate the potential Pickering stabilisation action of newly-formed kC-LA 344 

complexes, foam stability was explored. Firstly, foam half-life was measured and compared 345 

to those of pure surfactant solutions (Figure 6b). Foams produced at 0.005% and 0.2% LA 346 

were not measured as the air fraction was too low. Foam half-life initially increased from 35 347 

± 3 h at 0.025% LA up to 61 ± 8 h at 0.075% LA, where it peaked before decreasing to only 348 

12 ± 2 hours at 0.15% LA. All systems were stable for considerably longer than foams 349 

composed of pure surfactant solutions, which were only stable for 1.5 – 4 hours (Figure 6b). 350 

A similar trend in foam stability is often seen for particle-surfactant systems where the most 351 

stable foam corresponds to the optimum ratio of particle to surfactant concentration [5, 8, 352 

44]. This is where particles are coated with a surfactant monolayer resulting in their lowest 353 

charge and maximum hydrophobicity. Foam stability then decreases due to the formation of 354 

a surfactant bilayer on the particle surface rendering them hydrophilic and resulting in the 355 

mechanism of stabilisation changing from particle-stabilised to surfactant-stabilised. This 356 

explanation does not justify the peak in foam stability observed here, as the z-potential data 357 

(Figure 2) revealed that a bilayer did not form on the surface of particles at high LA 358 

concentrations as particles remained negatively charged. To investigate the trend observed 359 
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here, the position of the particles in the foams was explored, as well as the rate of 360 

coarsening and liquid drainage. 361 

 362 
Figure 6: (a) foam air fraction measurements for aerated kC-LA complexes ( ) and pure LA solutions ( ), as a function of 363 
LA concentration. Arrow indicates the CMC of LA. (b) foam half-life measurements for aerated kC-LA complexes ( ) and 364 
pure LA solutions ( ), as a function of LA concentration. 365 

 366 

a 

b 
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3.5 Foam stability mechanism  367 

Firstly, the location of particles in the foams was examined using optical and confocal 368 

microscopy to investigate the surface-activity of the modified kC particles. The bubbles 369 

formed upon aerating pure LA solutions were also imaged for comparison; these bubbles 370 

were spherical with smooth interfaces (Figure 7a). In contrast, foams produced with kC-LA 371 

complexes (at all LA concentrations) consisted of bubbles that appeared non-spherical and 372 

had a structured surface (Figure 7b). This is indicative of bubbles stabilised by adsorbed 373 

particles [8]. The micrograph in Figure 7c of aerated kC with 0.075% LA further supports 374 

this, as a layer of particulate entities can be seen at the surface of bubbles with tails 375 

protruding into the continuous phase. Both micrographs (Figure 7b and Figure 7c) also 376 

demonstrate the presence of particles in the continuous phase that had not adsorbed to the 377 

interface. The particles appeared quite different to those imaged in Figure 1a before 378 

complexation and aeration (longer and thinner in shape), it is possible that they deformed 379 

to increase their efficiency of adsorption at bubble interfaces. To provide further 380 

information on the coverage of bubble interfaces, confocal microscopy was used. Particles 381 

were dyed with rhodamine B and appear green in the micrographs (Figure 7d). A layer of 382 

particles can be seen on bubble interfaces providing high coverage. Particles can also be 383 

seen in the continuous phase. Microscopy was used to study all aerated complexes; some 384 

adsorption of particles at bubble interfaces was seen in all cases, verifying the ability to 385 

surface-activate kC particles through surfactant binding. However, it was difficult to 386 

quantify the magnitude of particle coverage using microscopy. Therefore, the change in 387 

bubble size over time was studied to analyse the effectiveness of particle coverage. 388 

 389 
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 390 
Figure 7: (a) optical micrograph of aerated 0.2% LA solution. (b) optical micrograph of aerated 1 wt% kC + 0.075% LA fluid 391 
gel complexes. (c) optical micrograph of aerated 1 wt% kC + 0.075% LA fluid gel complexes at a higher magnification. (d) 392 
confocal micrograph of aerated 1 wt% kC + 0.075% LA fluid gel complexes dyed with rhodamine B.  393 

 394 

It has been well reported that particles adsorbed to a/w interfaces provide a barrier to 395 

coarsening of the gas phase [3, 22]. The structure of these foams including bubble size over 396 

time was therefore recorded using a high resolution camera. Mean bubble area as a 397 

function of time for the first 4 h after aeration was plotted for each foam (Figure 8a). The 398 

initial mean bubble area (MBA) was similar for all foams (~7000 µm2), which corresponds to 399 

a bubble radius of ~12 µm. The MBA increased with time in all cases, due to 400 

disproportionation. This is where smaller bubbles shrink in size and larger bubbles grow due 401 

to the difference in their internal Laplace pressure. The foam consisting of kC particles and 402 

b a 

c d 
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0.025% LA displayed the highest rate of disproportionation (MBA ~ 70000 µm2 after 4 h). 403 

Upon increasing LA concentration to 0.05% and 0.075%, the smallest increase in MBA was 404 

observed (~20000 µm2 after 4 h) and upon further increasing LA to 0.1% and 0.15%, the rate 405 

of disproportionation subsequently increased again (~40000 µm2 after 4 h). These changes 406 

in disproportionation rates suggest differences in interfacial viscoelasticity, perhaps caused 407 

by a difference in stability mechanisms. It appears that at the lowest concentration of LA 408 

(0.025%), the foam is surfactant stabilised and therefore more vulnerable to 409 

disproportionation. At 0.05 and 0.075% LA, there is sufficient surfactant to coat the surface 410 

of the particles and foams are consequently particle stabilised. The interfacial viscoelasticity 411 

is high and the interface is protected against disproportionation. Above 0.075%, the rate of 412 

disproportionation begins to increase again. This suggests a change in dominant stability 413 

mechanism from particle stabilised to surfactant-stabilised. This cannot be due to the 414 

formation of a surfactant bilayer and consequent change in particle charge as is common 415 

with these systems (discussed in Section 3.4). It is therefore possible that there was a 416 

barrier to adsorption for some of the particles. Deleurence, Parneix [37] studied the effect 417 

of particle aggregation by de-coupling the effects of z-potential and particle charge (i.e. they 418 

varied the sign of the z-potential without changing the contact angle over a large rage of 419 

surfactant concentration). They found that foam properties were controlled by the 420 

flocculation state and the shear energy applied to produce the foam. Large aggregates did 421 

not adsorb spontaneously at the interface because of their size, however, when large shear 422 

energy was used to produce the foams, a very stable foam was formed. Adsorption of 423 

particles occurs if the time for adsorption, tA is considerably less than the time for interface 424 

creation, tCR. Both times depend on shear energy but the ratio does not. The ratio tA/tCR 425 

scales as a/d, where a is the diameter of the particles and d is the diameter of the bubbles. 426 
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Large aggregates in the order of 100 µm could therefore not adsorb as tA/tCR=10. The size of 427 

bubbles in this study were initially ~ 12 µm (Figure 8a). Therefore when aggregates reached 428 

~ 120 µm in diameter, adsorption would have been hindered. Above 0.075% LA, aggregates 429 

greater than 100 µm in size were observed by optical microscopy, which continued to 430 

increase in size with LA concentration (as discussed in Section 3.2). These would have been 431 

unable to adsorb to the interface, which explains the trend seen in Figure 8a. The interface 432 

would have been stabilised by free surfactant monomers, as well as those particles small 433 

enough to adsorb (the number of which would have decreased with increasing LA 434 

concentration). 435 

 436 

As well as particles being present at a/w interfaces, microscopy highlighted their presence in 437 

the continuous phase i.e. foam channels and nodes. Liquid drainage of the bulk phase was 438 

therefore measured to assess how it related to foam stability. Liquid content, calculated 439 

using conductivity data, is shown for each foam after 4 h as a fraction of initial content 440 

(Figure 8b). The trend is similar to that observed for foam half-life. The particle stabilised 441 

foams (0.05% LA and 0.07% LA) displayed little change in liquid content after 4 h. Whereas, 442 

a decrease was measured for 0.025%, 0.1% and 0.15% LA (surfactant-stabilised foams). This 443 

demonstrates that when particles adsorbed to the interface, their resistance to liquid 444 

drainage as well as disproportionation increased. In addition, the interaction and 445 

aggregation between particles would have helped to strengthen this barrier through the 446 

formation of a particle network between air bubbles [7, 42, 45]. However, when foams were 447 

surfactant stabilised, the classical drainage equation is applicable [46, 47]. Despite higher 448 

viscosity of the continuous phase upon increasing LA concentration (Figure 4), the liquid 449 

drainage was controlled by the change in stability mechanism.  450 
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 451 

Figure 8: (a) mean bubble area of aerated kC-LA complexes as a function of time after aeration, LA concentrations of 452 
0.025% ( ), 0.05% (  ), 0.075% (  ), 0.1% (  ) and 0.15% ( ). (b) fraction of liquid content remaining 4 453 
h after aeration in aerated kC-LA complexes as a function of LA concentration. Measurements were recorded at sensor 3 in 454 
a Krüss foam column (positioned half way down the foam). 455 

3.6 kC fluid gels with non-ionic surfactant  456 

In order to confirm this change in surface-activity of kappa carrageenan upon binding to LA, 457 

the foaming properties of kappa carrageenan mixed with a non-ionic surfactant, Tween 20, 458 

were studied. Following the same procedure as LA, a diluted 1% kC fluid gel was prepared 459 

and mixed with Tween 20 at various concentrations. Firstly, their ability to incorporate air 460 

a 

b 
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was determined using foam air fraction measurements and compared to pure surfactant 461 

solutions (Figure 9a). As the CMC of Tween 20 is quite low (0.0074 wt% [48]), which is 462 

typical of non-ionic surfactants, it was used at concentrations above this in order to increase 463 

foamability. The foam air fraction of pure surfactant solutions increased with Tween 20 464 

concentration until it plateaued at around 0.98 (Figure 9a). Foam air fractions of kC and 465 

Tween 20 mixed solutions followed a similar trend but, as with kC and LA fluid gel solutions, 466 

they were slightly below those of pure Tween 20 due to increased viscosity. Foam half-lives 467 

were then measured and plotted as a function of Tween 20 concentration in Figure 9b. No 468 

increase in stability was observed upon addition of kC to Tween 20 solutions; both systems 469 

were stable for only 1-4 hours at all concentrations. In addition, the bubbles were spherical 470 

and non-textured (Figure 9b inset), confirming that there was no adsorption of particles at 471 

the interface or interaction between kC and Tween 20. 472 
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 473 
Figure 9: (a) Foam air fraction measurements and (b) foam half-life measurements for 1 wt% kC + Tween 20  fluid gel 474 
complexes ( ) and pure Tween 20 solutions ( ), as a function of Tween 20  concentration. Arrow in (a) indicates the CMC 475 
of Tween 20. (b) inset is an optical micrograph of aerated 1 wt% kC + 0.075% Tween 20 fluid gel.  476 

a 

b 
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4 Conclusions 477 

This research has built upon work by Bonnaud, Weiss [24] who characterised an 478 

electrostatic interaction between food-grade cationic surfactant, lauric arginate, with 479 

negatively charged carrageenan in solution but did not explore their surface properties or 480 

ability to stabilise the a/w interface. In this work, the electrostatic interaction was facilitated 481 

between microgel particles of kappa carrageenan and LA. Turbidity, z-potential and 482 

rheological measurements were used to characterise the complexes, in particular their 483 

aggregation behaviour, which showed similar patterns to those observed by Bonnaud, 484 

Weiss [24]. The ability of complexes to lower surface tension was similar to that of pure 485 

surfactant solutions, however foams were over 10 times more stable in all cases. Foam half-486 

life peaked at an intermediate concentration of LA (0.075% LA). This peak was attributed to 487 

a change in stability mechanism from surfactant stabilisation to particle stabilisation, where 488 

the most stable foams exhibited a smaller increase in mean bubble size over time (slower 489 

disproportionation rate), as well as a slower liquid drainage rate. The adsorbed particles 490 

therefore provided sufficient interfacial elasticity to considerably slow these mechanisms, 491 

helped also by the interaction and aggregation between particles. However, at higher LA 492 

concentrations, extensive aggregation limited their ability to adsorb to the interface and 493 

foam stability decreased as surfactant stabilisation once again dominated. Similar particle-494 

surfactant systems have been limited by the formation of a surfactant bilayer on the surface 495 

of particles, changing their hydrophobicity [5, 8, 44]. A surfactant bilayer did not form in this 496 

system, suggesting that by optimising the size of particles and aggregates, greater foam 497 

stability can be reached. 498 

 499 
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This work helps to expand the existing knowledge of in-situ modification of hydrophilic 500 

particles for foam stabilisation, in particular work by Binks, Muijlwijk [14] who extended this 501 

method to the food industry. To the best of the authors’ knowledge, this is the first time 502 

that a surfactant has been used to surface-activate kappa carrageenan particles facilitating 503 

their adsorption to a/w interfaces. This provides a simple method to functionalise one of the 504 

most commonly used polysaccharides in the food industry, providing a more versatile 505 

ingredient for food microstructure design. For example, these particles have the potential to 506 

mimic fat droplets in whipped products, in terms of both texture and their role in stabilising 507 

the structure. There are many exciting future directions to further explore the knowledge 508 

gained in this study. For example, the optimisation of microgel shape and size may allow 509 

more efficient adsorption at the interface further increasing foam stability; Murphy, Farkas 510 

[28] reported the ability of smaller microgel particles to adsorb to an interface and increase 511 

interfacial elasticity more quickly. A more consistent shape and size may also allow the 512 

adsorption kinetics and structure at the interface to be more thoroughly investigated. In 513 

addition, the potential surface-activation of other polysaccharides (anionic and cationic) 514 

with other surfactants should be explored to utilise this efficient method of modification.  515 

  516 
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