1,656 research outputs found

    Tactile order memory: evidence for sequence learning phenomena found with other stimulus types

    Get PDF
    We examine serial order memory for sequences of tactile stimuli and investigate whether established characteristics of order memory, namely serial position effects, error distributions, and Hebb repetition learning, are observed with tactile memory. Visually obscured participants received six tactile stimulations: one to each of six fingers. At test, participants lifted the six fingers in the order of stimulation. For every third trial participants received the same order of stimulation (i.e. the Hebb sequence). Serial recall accuracy produced the canonical bowed serial position function found for immediate serial recall. In addition, recall for the Hebb sequence improved relative to the filler sequences, providing the first demonstration of the Hebb repetition effect with tactile stimuli. Analysis of errors revealed close similarities to that reported with verbal and visual stimuli. This experiment further generalises established features of order memory to tactile memory, supporting the utilisation of an analogous order memory mechanism across stimuli

    Glycemic Control Protocol Comparison using Virtual Trials

    Get PDF
    DTM2011 handbook/programme is given in files and also available as a hard copyBackground: Several accurate glycemic control (AGC) protocols for critical care patients exist but making comparisons is very hard. Objective: This study uses clinically validated virtual patient methods to compare safety and performance for several published AGC protocols. Method: Clinically validated virtual trials were run on 371 patients (39,481 hours, 26,646 measurements) created from the SPRINT AGC cohort. For protocols that do not modulate feed rates enteral nutrition was held at 100% of ACCP goal (25kcal/kg/day) when the patients were clinically fed, and parenteral nutrition rates were matched to clinical data. Performance was defined as %BG within glycemic bands and BG measurement frequency. Safety was defined as the incidence of severe (number patients with BG<40mg/dL) and moderate (%BG<72mg/dL) hypoglycemia. Clinical data from SPRINT is also compared. Results: Clinical SPRINT performance data matched re-simulated SPRINT with 86% vs. 86% BG in 80-145mg/dL, 2.00% vs. 2.07% BG above 180mg/dL and 7.83% vs. 7.29% BG below 72mg/dL, with 14 measurements (over 8 patients) of BG<40mg/dL. Yale results were 83.5%, 3.20%, 5.18%, with 6 severe hypoglycemic patients, using 37,961 measurements (23.0/day). Glucontrol had 75.2%, 3.70%, 9.45%, 52 cases and 26,199 measurements (15.8/day). Braithwaite had 84.2%, 3.00%, 4.22%, 19 cases and 24,396 measurements (14.8/day). The STAR (Stochastic TARgeted) model-based method had 90.6%, 1.67%, 1.33%, 5 cases and 20,591 measurements (12.3/day). Conclusions: Virtual trials provided an effective comparison across protocols with different target bands/values and different clinical cohorts. The model-based STAR protocol provided the best management of patient variability yielding the best performance and safety

    Veterinary epidemiology and economics in Africa. A manual for use in the design and appraisal of livestock health policy

    Get PDF
    Discusses basic techniques involved in the planning, monitoring and evaluation of livestock disease control programmes in Africa i.e. the theory & application of epidemiology statistical analysis, economics, estimating costs and decision making

    Development of a model-based clinical sepsis biomarker for critically ill patients

    Get PDF
    Invited. online 15 May 2010.Sepsis occurs frequently in the intensive care unit (ICU) and is a leading cause of admission, mortality, and cost. Treatment guidelines recommend early intervention, however positive blood culture results may take up to 48 h. Insulin sensitivity (SI) is known to decrease with worsening condition and could thus be used to aid diagnosis. Some glycemic control protocols are able to accurately identify insulin sensitivity in real-time. Hourly model-based insulin sensitivity SI values were calculated from glycemic control data of 36 patients with sepsis. The hourly SI is compared to the hourly sepsis score (ss) for these patients (ss = 0ā€“4 for increasing severity). A multivariate clinical biomarker was also developed to maximize the discrimination between different ss groups. Receiver operator characteristic (ROC) curves for severe sepsis (ss=2) are created for both SI and the multivariate clinical biomarker. Insulin sensitivity as a sepsis biomarker for diagnosis of severe sepsis achieves a 50% sensitivity, 76% specificity, 4.8% positive predictive value (PPV), and 98.3% negative predictive value (NPV) at an SI cut-off value of 0.00013 L/mU/min. Multivariate clinical biomarker combining SI, temperature, heart rate, respiratory rate, blood pressure, and their respective hourly rates of change achieves 73% sensitivity, 80% specificity, 8.4% PPV, and 99.2% NPV. Thus, themultivariate clinical biomarker provides an effective real-time negative predictive diagnostic for severe sepsis. Examination of both inter- and intra-patient statistical distribution of this biomarker and sepsis score shows potential avenues to improve the positive predictive value

    Impact of glucocorticoids on insulin resistance in the critically ill

    Get PDF
    Glucocorticoids (GCs) have been shown to reduce insulin sensitivity in healthy individuals. Widely used in critical care to treat a variety of inflammatory and allergic disorders, they may inadvertently exacerbate stress-hyperglycaemia. This research uses model-based methods to quantify the reduction of insulin sensitivity from GCs in critically ill patients, and thus their impact on glycaemic control. A clinically validated model-based measure of insulin sensitivity (SI) was used to quantify changes between two matched cohorts of 40 intensive care unit (ICU) patients who received GCs and a control cohort who did not. All patients were admitted to the Christchurch hospital ICU between 2005 and 2007 and spent at least 24 hours on the SPRINT glycaemic control protocol. A 31% reduction in whole-cohort median insulin sensitivity was seen between the control cohort and patients receiving glucocorticoids with a median dose equivalent to 200mg/day of hydrocortisone per patient. Comparing percentile-patients as a surrogate for matched patients, reductions in median insulin sensitivity of 20, 25, and 21% were observed for the 25th, 50th and 75th-percentile patients. All these cohort and per-patient reductions are less than or equivalent to the 30-62% reductions reported in healthy subjects especially when considering the fact that the GC doses in this study are 1.3-4 times larger than those in studies of healthy subjects. This reduced suppression of insulin sensitivity in critically ill patients could be a result of saturation due to already increased levels of catecholamines and cortisol common in critically illness. Virtual trial simulation showed that reductions in insulin sensitivity of 20-30% associated with glucocorticoid treatment in the ICU have limited impact on glycaemic control levels within the context of the SPRINT protocol

    Development of a Clinical Type 1 Diabetes Metabolic System Model and in Silico Simulation Tool

    Get PDF
    Invited journal symposium paperObjectives: To develop a safe and effective protocol for the clinical control of Type 1 diabetes using conventional self-monitoring blood glucose (SMBG) measurements, and multiple daily injection (MDI) with insulin analogues. To develop an in silico simulation tool of Type 1 diabetes to predict long-term glycaemic control outcomes of clinical interventions. Methods: The virtual patient method is used to develop a simulation tool for Type 1 diabetes using data from a Type 1 diabetes patient cohort (n=40). The tool is used to test the adaptive protocol (AC) and a conventional intensive insulin therapy (CC) against results from a representative control cohort. Optimal and suboptimal basal insulin replacement are evaluated as a function of self-monitoring blood glucose (SMBG) frequency in conjunction with the (AC and CC) prandial control protocols. Results: In long-term glycaemic control, the AC protocol significantly decreases HbA1c in conditions of suboptimal basal insulin replacement for SMBG frequencies =6/day, and reduced the occurrence of mild and severe hypoglycaemia by 86-100% over controls over all SMBG frequencies in conditions of optimal basal insulin. Conclusions: A simulation tool to predict long-term glycaemic control outcomes from clinical interventions is developed to test a novel, adaptive control protocol for Type 1 diabetes. The protocol is effective and safe compared to conventional intensive insulin therapy and controls. As fear of hypoglycaemia is a large psychological barrier to glycaemic control, the AC protocol may represent the next evolution of intensive insulin therapy to deliver increased glycaemic control with increased safety. Further clinical or experimental validation is needed to fully prove the concept

    Using optical spectroscopy to map the geometry and structure of the irradiated accretion discs in low-mass X-ray binaries:the pilot study of MAXI J0637-430

    Get PDF
    The recurring transient outbursts in low-mass X-ray binaries (LMXBs) provide us with strong test-beds for constraining the poorly understood accretion process. While impossible to image directly, phase-resolved spectroscopy can provide a powerful diagnostic to study their highly complex, time-dependent accretion discs. We present an 8-month long multi-wavelength (UV, optical, X-ray) monitoring campaign of the new candidate black hole LMXB MAXI J0637āˆ’-430 throughout its 2019/2020 outburst, using the {\em Neil Gehrels Swift Observatory}, as well as three quasi-simultaneous epochs of Gemini/GMOS optical spectroscopy. We find evidence for the existence of a correlation between the X-ray irradiation heating the accretion disc and the evolution of the He {\sc ii} 4686 \AA emission line profiles detected in the optical spectra. Our results demonstrate a connection between the line emitting regions and physical properties of the X-ray irradiation heating the discs during outburst cycles of LMXBs. Further, we are able to show that changes in the physical properties of the irradiation heating the disc in outburst can be imprinted within the H/He emission line profiles themselves in these systems.Comment: 23 pages (including 3 appendices), 10 figures, supplementary figures included in the appendices, accepted for publication in MNRA

    Overview of Glycemic Control in Critical Care - Relating Performance and Clinical Results

    Get PDF
    Inagural review article invited for inaugural journalBackground: Hyperglycemia is prevalent in critical care and tight control can save lives. Current ad-hoc clinical protocols require significant clinical effort and produce highly variable results. Model-based methods can provide tight, patient specific control, while addressing practical clinical difficulties and dynamic patient evolution. However, tight control remains elusive as there is not enough understanding of the relationship between control performance and clinical outcome. Methods: The general problem and performance criteria are defined. The clinical studies performed to date using both ad-hoc titration and model-based methods are reviewed. Studies reporting mortality outcome are analysed in terms of standardized mortality ratio (SMR) and a 95th percentile (Ā±2 ) standard error (SE95%) to enable better comparison across cohorts. Results: Model-based control trials lower blood glucose into a 72-110mg/dL band within 10 hours, have target accuracy over 90%, produce fewer hypoglycemic episodes, and require no additional clinical intervention. Plotting SMR versus SE95% shows potentially high correlation (r=0.84) between ICU mortality and tightness of control. Summary: Model-based methods provide tighter, more adaptable ā€œone method fits allā€ solutions, using methods that enable patient-specific modeling and control. Correlation between tightness of control and clinical outcome suggests that performance metrics, such as time in a relevant glycemic band, may provide better guidelines. Overall, compared to current ā€œone size fits allā€ sliding scale and ad-hoc regimens, patient-specific pharmacodynamic and pharmacokinetic model-based, or ā€œone method fits allā€, control, utilizing computational and emerging sensor technologies, offers improved treatment and better potential outcomes when treating hyperglycemia in the highly dynamic critically ill patient
    • ā€¦
    corecore