126 research outputs found

    DISCONNECTION OF OPEN CORONAL MAGNETIC STRUCTURES

    Get PDF
    We have examined the Solar Maximum Mission coronagraph/polarimeter observations for evidence of magnetic disconnection of previously open magnetic structures and a number of likely examples have been found. Probable coronal disconnections typically appear as pinching off of helmet streamers followed by the release and outward acceleration of a large U or V-shaped structures. The observed sequence of events is consistent with reconnection across the heliospheric current sheet between previously open magnetic field regions, and the creation of a detached magnetic structure which is open to interplanetary space at both ends. Sunward of the reconnection point, coronal disconnection events would return previously open magnetic flux to the Sun as closed field arches. Here we (1) describe one clear disconnection event (1 June 1989); (2) examine the results of a limited survey of disconnection events; and (3) discuss the potential importance of coronal disconnections for maintaining flux in interplanetary space. 7 refs., 3 figs

    The Structure of a Rigorously Conserved RNA Element within the SARS Virus Genome

    Get PDF
    We have solved the three-dimensional crystal structure of the stem-loop II motif (s2m) RNA element of the SARS virus genome to 2.7-Å resolution. SARS and related coronaviruses and astroviruses all possess a motif at the 3′ end of their RNA genomes, called the s2m, whose pathogenic importance is inferred from its rigorous sequence conservation in an otherwise rapidly mutable RNA genome. We find that this extreme conservation is clearly explained by the requirement to form a highly structured RNA whose unique tertiary structure includes a sharp 90° kink of the helix axis and several novel longer-range tertiary interactions. The tertiary base interactions create a tunnel that runs perpendicular to the main helical axis whose interior is negatively charged and binds two magnesium ions. These unusual features likely form interaction surfaces with conserved host cell components or other reactive sites required for virus function. Based on its conservation in viral pathogen genomes and its absence in the human genome, we suggest that these unusual structural features in the s2m RNA element are attractive targets for the design of anti-viral therapeutic agents. Structural genomics has sought to deduce protein function based on three-dimensional homology. Here we have extended this approach to RNA by proposing potential functions for a rigorously conserved set of RNA tertiary structural interactions that occur within the SARS RNA genome itself. Based on tertiary structural comparisons, we propose the s2m RNA binds one or more proteins possessing an oligomer-binding-like fold, and we suggest a possible mechanism for SARS viral RNA hijacking of host protein synthesis, both based upon observed s2m RNA macromolecular mimicry of a relevant ribosomal RNA fold

    Surface charging and electrostatic dust acceleration at the nucleus of comet 67P during periods of low activity

    Get PDF
    We have investigated through simulation the electrostatic charging of the nucleus of Comet 67 P/Churyumov-Gerasimenko during periods of weak outgassing activity. Specifically, we have modeled the surface potential and electric field at the surface of the nucleus during the initial Rosetta rendezvous at 3.5 AU and the release of the Philae lander at 3 AU. We have also investigated the possibility of dust acceleration and ejection above the nucleus due to electrostatic forces. Finally, we discuss these modeling results in the context of possible observations by instruments on both the Rosetta orbiter and the Philae lander

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    The Physical Processes of CME/ICME Evolution

    Get PDF
    As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.Peer reviewe

    Charge Transfer Reactions

    Full text link

    STEREO IMPACT Investigation Goals, Measurements, and Data Products Overview

    Full text link

    The Physical Processes of CME/ICME Evolution

    Get PDF
    corecore