19 research outputs found

    Using the inertia of spacecraft during landing to penetrate regoliths of the Solar System

    Get PDF
    The high inertia, i.e. high mass and low speed, of a landing spacecraft has the potential to drive a penetrometer into the subsurface without the need for a dedicated deployment mechanism, e.g., during Huygens landing on Titan. Such a method could complement focused subsurface exploration missions, particularly in the low gravity environments of comets and asteroids, as it is conducive to conducting surveys and to the deployment of sensor networks. We make full-scale laboratory simulations of a landing spacecraft with a penetrometer attached to its base plate. The tip design is based on that used in terrestrial Cone Penetration Testing (CPT) with a large enough shaft diameter to house instruments for analysing pristine subsurface material. Penetrometer measurements are made in a variety of regolith analogue materials and target compaction states. For comparison a copy of the ACC-E penetrometer from the Huygens mission to Titan is used. A test rig at the Open University is used and is operated over a range of speeds from 0.9 to 3 m s−1 and under two gravitational accelerations. The penetrometer was found to be sensitive to the target’s compaction state with a high degree of repeatability. The penetrometer measurements also produced unique pressure profile shapes for each material. Measurements in limestone powder produced an exponential increase in pressure with depth possibly due to increasing compaction with depth. Measurements in sand produced an almost linear increase in pressure with depth. Iron powder produced significantly higher pressures than sand presumably due to the rough surface of the grains increasing the grain-grain friction. Impacts into foamglas produced with both ACC-E and the large penetrometer produced an initial increase in pressure followed by a leveling off as expected in a consolidated material. Measurements in sand suggest that the pressure on the tip is not significantly dependent on speed over the range tested, which suggests bearing strength equations could be applied to impact penetrometry in sand-like regoliths. In terms of performance we find the inertia of a landing spacecraft, with a mass of 100 kg, is adequate to penetrate regoliths expected on the surface of Solar System bodies. Limestone powder, an analogue for a dusty surface, offered very little resistance allowing full penetration of the target container. Both iron powder, representing a stronger coarse grained regolith, and foamglas, representing a consolidated comet crust, could be penetrated to similar depths of around two to three tip diameters. Speed tests suggest a linear dependence of penetration depth on impact speed

    “Dogged” Search of Fresh Nakhla Surfaces Reveals New Alteration Textures

    Get PDF
    Special Issue: 74th Annual Meeting of the Meteoritical Society, August 8-12, 2011, London, U.K.International audienceCarbonaceous chondrites are considered as amongst the most primitive Solar System samples available. One of their primitive characteristics is their enrichment in volatile elements.This includes hydrogen, which is present in hydrated and hydroxylated minerals. More precisely, the mineralogy is expected to be dominated by phyllosilicates in the case of CM chondrites, and by Montmorillonite type clays in the case of CI. Here, in order to characterize and quantify the abundance of lowtemperature minerals in carbonaceous chondrites, we performed thermogravimetric analysis of matrix fragments of Tagish Lake, Murchison and Orgueil

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    The Solution of the Metric STRESS and SSTRESS Problems in Multidimensional Scaling Using Newton's Method

    No full text
    This paper considers numerical algorithms for finding local minimizers of metric multidimensional scaling problems. The two most common optimality criteria (STRESS and SSTRESS) are considered, the leading algorithms for each are carefully explicated, and a new algorithm is proposed. The new algorithm is based on Newton's method and relies on a parameterization that has not previously been used in multidimensional scaling algorithms. In contrast to previous algorithms, a very pleasant feature of the new algorithm is that it can be used with either the STRESS or the SSTRESS criterion. Numerical results are presented for the metric STRESSS problem. These results are quite satisfying and, among other things, suggest that the well-known SMACOF-I algorithm tends to stop prematurely

    Time-resolved measurements of emission and absorption in a long pulse duration XeCl* laser

    No full text
    In this paper we describe time-resolved absorption and emission studies of an XeCl* laser discharge. The studies we carried out in order to gain a better understanding of the causes leading to the premature termination of both spontaneous emission and laser pulses in our device. This is a feature showed by all discharge pumped rare gas halide lasers.Cet article dĂ©crit des Ă©tudes d'absorption et d'Ă©mission menĂ©es avec rĂ©solution temporelle sur une dĂ©charge laser XeCl*. Ce travail a Ă©tĂ© conduit pour mieux comprendre les mĂ©canismes provoquant un arrĂȘt prĂ©maturĂ© des Ă©missions spontanĂ©es ou laser. Ce phĂ©nomĂšne est caractĂ©ristique de tout laser Ă  halogĂ©nure de gaz rares excitĂ© par dĂ©charge. Nos rĂ©sultats dĂ©montrent sans ambiguĂŻtĂ© que la cause premiĂšre de l'arrĂȘt d'Ă©mission laser est la constriction du volume de la dĂ©charge. En outre il est montrĂ© que la prĂ©sence de HCl dans le mĂ©lange est Ă  l'origine de ce phĂ©nomĂšne de constriction

    Petrogenesis and chronology of lunar meteorite Northwest Africa 4472: a KREEPy regolith breccia from the Moon

    No full text
    Northwest Africa (NWA) 4472 is a polymict lunar regolith meteorite. The sample is KREEP-rich (high concentrations of potassium, rare earth elements and phosphorus) and comprises a heterogeneous array of lithic and mineral fragments. These clasts and mineral fragments were sourced from a range of lunar rock types including the lunar High Magnesian Suite, the High Alkali Suite, KREEP basalts, mare basalts and a variety of impact crater environments. The KREEP-rich nature of NWA 4472 indicates that the sample was ejected from regolith on the nearside of the Moon in the Procellarum KREEP Terrane and we have used Lunar Prospector gamma-ray remote sensing data to show that the meteorite is most similar to (and most likely sourced from) regoliths adjacent to the Imbrium impact basin. U–Pb and Pb–Pb age dates of NWA 4472 phosphate phases reveal that the breccia has sampled Pre-Nectarian (4.35 Ga) rocks related to early episodes of KREEP driven magmatism. Some younger phosphate U–Pb and Pb–Pb age dates are likely indicative of impact resetting events at 3.9–4 Ga, consistent with the suggested timing of basin formation on the Moon. Our study also shows that NWA 4472 has sampled impact melts and glass with an alkali-depleted, incompatible trace element-rich (high Sc, low Rb/Th ratios, low K) compositional signature not related to typical Apollo high-K KREEP, or that sampled by KREEPy lunar meteorite Sayh al Uhaymir (SaU) 169. This provides evidence that there are numerous sources of KREEP-rich protoliths on the Moon
    corecore