85 research outputs found

    The High Arctic glacial ecosystem: new insights from nutrient budgets

    Get PDF

    Seasonal snowpack microbial ecology and biogeochemistry on a High Arctic ice cap reveals negligible autotrophic activity during spring and summer melt

    Get PDF
    Snowpack ecosystem studies are primarily derived from research on snow-on-soil ecosystems. Greater research attention needs to be directed to the study of glacial snow covers as most snow cover lies on glaciers and ice sheets. With rising temperatures, snowpacks are getting wetter, which can potentially give rise to biologically productive snowpacks. The present study set out to determine the linkage between the thermal evolution of a snowpack and the seasonal microbial ecology of snow. We present the first comprehensive study of the seasonal microbial activity and biogeochemistry within a melting glacial snowpack on a High Arctic ice cap, Foxfonna, in Svalbard. Nutrients from winter atmospheric bulk deposition were supplemented by dust fertilization and weathering processes. NH4+ and PO43− resources in the snow therefore reached their highest values during late June and early July, at 22 and 13.9 mg m−2, respectively. However, primary production did not respond to this nutrient resource due to an absence of autotrophs in the snowpack. The average autotrophic abundance on the ice cap throughout the melt season was 0.5 ± 2.7 cells mL−1. Instead, the microbial cell abundance was dominated by bacterial cells that increased from an average of (39 ± 19 cells mL−1) in June to (363 ± 595 cells mL−1) in early July. Thus, the total seasonal biological production on Foxfonna was estimated at 153 mg C m−2, and the glacial snowpack microbial ecosystem was identified as net-heterotrophic. This work presents a seasonal “album” documenting the bacterial ecology of glacial snowpacks

    Biogeochemical processes in the active layer and permafrost of a high Arctic fjord valley

    Get PDF
    Warming of ground is causing microbial decomposition of previously frozen sedimentary organic carbon in Arctic permafrost. However, the heterogeneity of the permafrost landscape and its hydrological processes result in different biogeochemical processes across relatively small scales, with implications for predicting the timing and magnitude of permafrost carbon emissions. The biogeochemical processes of iron- and sulfate-reduction produce carbon dioxide and suppress methanogenesis. Hence, in this study, the biogeochemical processes occurring in the active layer and permafrost of a high Arctic fjord valley in Svalbard are identified from the geochemical and stable isotope analysis of aqueous and particulate fractions in sediment cores collected from ice-wedge polygons with contrasting water content. In the drier polygons, only a small concentration of organic carbon (<5.40 dry weight%) has accumulated. Sediment cores from these drier polygons have aqueous and solid phase chemistries that imply sulfide oxidation coupled to carbonate and silicate dissolution, leading to high concentrations of aqueous iron and sulfate in the pore water profiles. These results are corroborated by ÎŽ34S and ÎŽ18O values of sulfate in active layer pore waters, which indicate the oxidative weathering of sedimentary pyrite utilising either oxygen or ferric iron as oxidising agents. Conversely, in the sediments of the consistently water-saturated polygons, which contain a high content of organic carbon (up to 45 dry weight%), the formation of pyrite and siderite occurred via the reduction of iron and sulfate. ÎŽ34S and ÎŽ18O values of sulfate in active layer pore waters from these water-saturated polygons display a strong positive correlation (R2 = 0.98), supporting the importance of sulfate reduction in removing sulfate from the pore water. The significant contrast in the dominant biogeochemical processes between the water-saturated and drier polygons indicates that small-scale hydrological variability between polygons induces large differences in the concentration of organic carbon and in the cycling of iron and sulfur, with ramifications for the decomposition pathway of organic carbon in permafrost environments

    Hydro-biogeochemical coupling beneath a large polythermal Arctic glacier: implications for subice sheet biogeochemistry

    Get PDF
    We analyze the interannual chemical and isotopic composition of runoff from a large, high Arctic valley glacier over a 5 year period, during which drainage evolved from a long-residence-time drainage system feeding an artesian subglacial upwelling (SGU) at the glacier terminus to a shorter-residence-time drainage system feeding an ice-marginal channel (IMC). Increased icemelt inputs to the SGU are thought to have triggered this evolution. This sequence of events provides a unique opportunity to identify coupling between subglacial hydrology and biogeochemical processes within drainage systems of differing residence time. The biogeochemistry of the SGU is consistent with prolonged contact between meltwaters and subglacial sediments, in which silicate dissolution is enhanced, anoxic processes (e.g., sulphate reduction) prevail, and microbially generated CO2 and sulphide oxidation drive mineral dissolution. Solute in the IMC was mainly derived from moraine pore waters which are added to the channel via extraglacial streams. These pore waters acquire solute predominantly via sulphide oxidation coupled to carbonate/silicate dissolution. We present the first evidence that microbially mediated processes may contribute a substantial proportion (80% in this case) of the total glacial solute flux, which includes coupling between microbial CO2-generation and silicate/carbonate dissolution. The latter suggests the presence of biofilms in subglacial/ice-marginal sediments, where local perturbation of the geochemical environment by release of protons, organic acids, and ligands stimulates mineral dissolution. These data enable inferences to be made regarding biogeochemical processes in longer-residence-time glacial systems, with implications for the future exploration of Antarctic subglacial lakes and other wet-based ice sheet environments

    Icescape-scale metabolomics reveals cyanobacterial and topographic control of the core metabolism of the cryoconite ecosystem of an Arctic ice cap

    Get PDF
    DATA AVAILABILITY STATEMENT : All data publicly available at DOI: 10.5281/zenodo.7669756.Glaciers host ecosystems comprised of biodiverse and active microbiota. Among glacial ecosystems, less is known about the ecology of ice caps since most studies focus on valley glaciers or ice sheet margins. Previously we detailed the microbiota of one such high Arctic ice cap, focusing on cryoconite as a microbe-mineral aggregate formed by cyanobacteria. Here, we employ metabolomics at the scale of an entire ice cap to reveal the major metabolic pathways prevailing in the cryoconite of Foxfonna, central Svalbard. We reveal how geophysical and biotic processes influence the metabolomes of its resident cryoconite microbiota. We observed differences in amino acid, fatty acid, and nucleotide synthesis across the cap reflecting the influence of ice topography and the cyanobacteria within cryoconite. Ice topography influences central carbohydrate metabolism and nitrogen assimilation, whereas bacterial community structure governs lipid, nucleotide, and carotenoid biosynthesis processes. The prominence of polyamine metabolism and nitrogen assimilation highlights the importance of recycling nitrogenous nutrients. To our knowledge, this study represents the first application of metabolomics across an entire ice mass, demonstrating its utility as a tool for revealing the fundamental metabolic processes essential for sustaining life in supraglacial ecosystems experiencing profound change due to Arctic climate change-driven mass loss.Great Britain Sasakawa Foundation; Natural Environment Research Council; Norges ForskningsrÄd; South Africa National Research Foundation.http://wileyonlinelibrary.com/journal/emiam2024Plant Production and Soil ScienceSDG-13:Climate actionSDG-15:Life on lan

    Excitatory granule neuron precursors orchestrate laminar localization and differentiation of cerebellar inhibitory interneuron subtypes

    Get PDF
    GABAergic interneurons migrate long distances through stereotyped migration programs toward specific laminar positions. During their migration, GABAergic interneurons are morphologically alike but then differentiate into a rich array of interneuron subtypes critical for brain function. How interneuron subtypes acquire their final phenotypic traits remains largely unknown. Here, we show that cerebellar molecular layer GABAergic interneurons, derived from the same progenitor pool, use separate migration paths to reach their laminar position and differentiate into distinct basket cell (BC) and stellate cell (SC) GABAergic interneuron subtypes. Using two-photon live imaging, we find that SC final laminar position requires an extra step of tangential migration supported by a subpopulation of glutamatergic granule cells (GCs). Conditional depletion of GCs affects SC differentiation but does not affect BCs. Our results reveal how timely feedforward control of inhibitory interneuron migration path regulates their terminal differentiation and, thus, establishment of the local inhibitory circuit assembly

    Sub-permafrost methane seepage from open-system pingos in Svalbard

    Get PDF
    Methane release from beneath lowland permafrost represents an important uncertainty in the Arctic greenhouse gas budget. Our current knowledge is arguably best developed in settings where permafrost is being inundated by rising sea level, which means much of the methane is oxidised in the water column before it reaches the atmosphere. Here we provide a different process perspective that is appropriate for Arctic fjord valleys where local deglaciation causes isostatic uplift to out pace rising sea level. We describe how the uplift induces permafrost aggradation in former marine sediments, whose pressurisation results in methane escape directly to the atmosphere via groundwater springs. In Adventdalen, central Spitsbergen, we show how the springs are historic features responsible for the formation of open-system pingos and capable of discharging brackish waters enriched with high concentrations of mostly biogenic methane (average 18 mg L−1). Thermodynamic calculations show that the methane concentrations sometimes marginally exceed the solubility limit for methane in water at 0 ∘C (41 mg L−1). Year-round emissions from the pingos are described. During winter, rapid methane loss to the atmosphere occurs following outburst events from beneath an ice blister. During summer, highly variable emissions occur due to complex surface processes at the seepage point and its inundation by surface runoff. In spite of this complexity, our observations confirm that sub-permafrost methane migration deserves more attention for the improved forecasting of Arctic greenhouse gas emissions

    Changes in meltwater chemistry over a 20-year period following a thermal regime switch from polythermal to cold-based glaciation at Austre Broggerbreen, Svalbard

    Get PDF
    Our long-term study gives a rare insight into meltwater hydrochemistry following the transition of Austre Brþggerbreen from polythermal to cold-based glaciation and its continued retreat. We find that the processes responsible for ion acquisition did not change throughout the period of records but became more productive. Two regimes before and after July/August 2000 were identified from changes in solute concentrations and pH. They resulted from increased chemical weathering occurring in ice-marginal and proglacial environments that have become progressively exposed by glacier retreat. Carbonate carbonation nearly doubled between 2000 and 2010, whilst increases in the weathering of silicate minerals were also marked. In addition, the end of ablation season chemistry was characterized by reactions in long residence time flow paths like those in subglacial environments, in spite of their absence in the watershed. Furthermore, the retreat of the glacier caused the sudden re-routing of meltwaters through its immediate forefield during 2009, which more than doubled crustal ion yields in this particular year and influenced chemical weathering in 2010 regardless of a low water flux. Such a “flush” of crustally derived ions can be meaningful for downstream terrestrial and marine ecosystems. We therefore find that, during glacier retreat, the recently exposed forefield is the most chemically active part of the watershed, making high rates of weathering possible, even when ice losses have caused a switch to cold-based conditions with no delayed subglacial drainage flowpaths. In addition, the drainage system reorganization events result in significant pCO2 depletion in an otherwise high pCO2 system

    Glacier algae accelerate melt rates on the western Greenland Ice Sheet

    Get PDF
    Melting of the Greenland Ice Sheet (GrIS) is the largest single contributor to eustatic sea level and is amplified by the growth of pigmented algae on the ice surface that increase solar radiation absorption. This biological albedo reducing effect and its impact upon sea level rise has not previously been quantified. Here, we combine field spectroscopy with a novel radiative transfer model, supervised classification of UAV and satellite remote sensing data and runoff modelling to calculate biologically-driven ice surface ablation and compare it to the albedo reducing effects of local mineral dust. We demonstrate that algal growth led to an additional 5.5–8.0 Gt of runoff from the western sector of the GrIS in summer 2016, representing 6–9 % of the total. Our analysis confirms the importance of the biological albedo feedback and that its omission from predictive models leads to the systematic underestimation of Greenland’s future sea level contribution, especially because both the bare ice zones available for algal colonization and the length of the active growth season are set to expand in the future
    • 

    corecore