1,657 research outputs found

    The Canadian ‘Model Forest’ approach : a way forward for Tasmania?

    Get PDF
    Forest policy and forestry management in Tasmania have undergone a number of changes in the last thirty years, many explicitly aimed at improving industry sustainability, job security, and forest biodiversity conservation. Yet forestry remains a contentious issue in Tasmania, due to a number of interacting factors, most significant of which is the prevalence of a ‘command and control’ governance approach by policymakers and managers. New approaches such as multiple-stakeholder decision-making, adaptive management, and direct public participation in policymaking are needed. Such an approach has been attempted in Canada in the last decade, through the Canadian Model Forest Program, and may be suitable for Tasmania. This paper seeks to describe what the Canadian Model Forest approach is, how it may be implemented in Tasmania, and what role it may play in the shift to a new forestry paradigm. Until such a paradigm shift occurs contentions and confrontations are likely to continue

    The contrasting physiological and subjective effects of chewing gum on social stress

    Get PDF
    Uncertainty exists with respect to the extent to which chewing gum may attenuate stress-induced rises in cortisol secretion (Scholey et al., 2009; Smith, 2010; Johnson et al., 2011). The present study used the Trier Social Stress Task (TSST: Kirschbaum et al., 1993), a task known to elevate cortisol secretion (Kudielka et al., 2004), in order to examine the moderating physiological and subjective effects of chewing gum on social stress. Forty participants completed the TSST either with or without chewing gum. As expected, completion of the TSST elevated both cortisol and subjective stress levels, whilst impairing mood. Although gum moderated the perception of stress, cortisol concentrations were higher following the chewing of gum. The findings are consistent with Smith (2010) who argued that elevations in cortisol following the chewing of gum reflect heightened arousal. The findings suggest that chewing gum only benefits subjective measures of stress. The mechanism remains unclear; however, this may reflect increased cerebral blood flow, cognitive distraction, and/or effects secondary to task facilitation

    Tungsten Behavior at High Temperature and High Stress

    Get PDF
    Re­cent­ly re­port­ed re­sults on the tung­sten life­time/fa­tigue tests under con­di­tions ex­pect­ed in the Neu­tri­no Fac­to­ry tar­get have strength­ened the case of solid tar­get op­tion for a Neu­tri­no Fac­to­ry. This paper gives de­scrip­tion of the de­tailed mea­sure­ments of the tung­sten prop­er­ties at high tem­per­a­ture and high stress. We have per­formed ex­ten­sive set of mea­sure­ments of the sur­face dis­place­ment and ve­loc­i­ty of the tung­sten wires that were stressed by pass­ing a fast, high cur­rent pulse through a thin sam­ple. Ra­di­al and lon­gi­tu­di­nal os­cil­la­tions of the wire were mea­sured by a Laser Doppler Vi­brom­e­ter. The wire was op­er­at­ed at tem­per­a­tures of 300-2500 K by ad­just­ing the pulse rep­e­ti­tion rate. In doing so we have tried to sim­u­late the con­di­tions (high stress and tem­per­a­ture) ex­pect­ed at the Neu­tri­no Fac­to­ry. Most im­por­tant re­sult of this study is an ex­per­i­men­tal con­fir­ma­tion that strength of tung­sten re­mains high at high tem­per­a­ture and high stress. The ex­per­i­men­tal re­sults have been found to agree very well with LS-DY­NA mod­elling re­sults

    High-pressure annealing of a prestructured nanocrystalline precursor to obtain tetragonal and orthorhombic polymorphs of Hf3N4

    No full text
    Transition metal nitrides containing metal ions in high oxidation states are a significant goal for the discovery of new families of semiconducting materials. Most metal nitride compounds prepared at high temperature and high pressure from the elements have metallic bonding. However amorphous or nanocrystalline compounds can be prepared via metal-organic chemistry routes giving rise to precursors with a high nitrogen:metal ratio. Using X-ray diffraction in parallel with high pressure laser heating in the diamond anvil cell this work highlights the possibility of retaining the composition and structure of a metastable nanocrystalline precursor under high pressure-temperature conditions. Specifically, a nanocrystalline Hf3N4 with a tetragonal defect-fluorite structure can be crystallized under high-P,T conditions. Increasing the pressure and temperature of crystallization leads to the formation of a fully recoverable orthorhombic (defect cottunite-structured) polymorph. This approach identifies a novel class of pathways to the synthesis of new crystalline nitrogen-rich transition metal nitrides

    Origins and evolution of stomatal development

    Get PDF
    The fossil record suggests stomata-like pores were present on the surfaces of land plants over 400 million years ago. Whether stomata arose once or whether they arose independently across newly evolving land plant lineages has long been a matter of debate. In Arabidopsis, a genetic toolbox has been identified that tightly controls stomatal development and patterning. This includes the basic helix-loop-helix (bHLH) transcription factors SPEECHLESS (SPCH), MUTE, FAMA, and ICE/SCREAMs (SCRMs), which promote stomatal formation. These factors are regulated via a signaling cascade, which includes mobile EPIDERMAL PATTERNING FACTOR (EPF) peptides to enforce stomatal spacing. Mosses and hornworts, the most ancient extant lineages to possess stomata, possess orthologs of these Arabidopsis (Arabidopsis thaliana) stomatal toolbox genes, and manipulation in the model bryophyte Physcomitrella patens has shown that the bHLH and EPF components are also required for moss stomatal development and patterning. This supports an ancient and tightly conserved genetic origin of stomata. Here, we review recent discoveries and, by interrogating newly available plant genomes, we advance the story of stomatal development and patterning across land plant evolution. Furthermore, we identify potential orthologs of the key toolbox genes in a hornwort, further supporting a single ancient genetic origin of stomata in the ancestor to all stomatous land plants

    Origins and evolution of stomatal development

    Get PDF
    The fossil record suggests stomata-like pores were present on the surfaces of land plants over 400 million years ago. Whether stomata arose once or whether they arose independently across newly evolving land plant lineages has long been a matter of debate. In Arabidopsis, a genetic toolbox has been identified that tightly controls stomatal development and patterning. This includes the basic helix-loop-helix (bHLH) transcription factors SPEECHLESS (SPCH), MUTE, FAMA, and ICE/SCREAMs (SCRMs), which promote stomatal formation. These factors are regulated via a signaling cascade, which includes mobile EPIDERMAL PATTERNING FACTOR (EPF) peptides to enforce stomatal spacing. Mosses and hornworts, the most ancient extant lineages to possess stomata, possess orthologs of these Arabidopsis (Arabidopsis thaliana) stomatal toolbox genes, and manipulation in the model bryophyte Physcomitrella patens has shown that the bHLH and EPF components are also required for moss stomatal development and patterning. This supports an ancient and tightly conserved genetic origin of stomata. Here, we review recent discoveries and, by interrogating newly available plant genomes, we advance the story of stomatal development and patterning across land plant evolution. Furthermore, we identify potential orthologs of the key toolbox genes in a hornwort, further supporting a single ancient genetic origin of stomata in the ancestor to all stomatous land plants

    Stomata and sporophytes of the model moss physcomitrium patens

    Get PDF
    Mosses are an ancient land plant lineage and are therefore important in studying the evolution of plant developmental processes. Here, we describe stomatal development in the model moss species Physcomitrium patens (previously known as Physcomitrella patens) over the duration of sporophyte development. We dissect the molecular mechanisms guiding cell division and fate and highlight how stomatal function might vary under different environmental conditions. In contrast to the asymmetric entry divisions described in Arabidopsis thaliana, moss protodermal cells can enter the stomatal lineage directly by expanding into an oval shaped guard mother cell (GMC). We observed that when two early stage P. patens GMCs form adjacently, a spacing division can occur, leading to separation of the GMCs by an intervening epidermal spacer cell. We investigated whether orthologs of Arabidopsis stomatal development regulators are required for this spacing division. Our results indicated that bHLH transcription factors PpSMF1 and PpSCRM1 are required for GMC formation. Moreover, the ligand and receptor components PpEPF1 and PpTMM are also required for orientating cell divisions and preventing single or clustered early GMCs from developing adjacent to one another. The identification of GMC spacing divisions in P. patens raises the possibility that the ability to space stomatal lineage cells could have evolved before mosses diverged from the ancestral lineage. This would have enabled plants to integrate stomatal development with sporophyte growth and could underpin the adoption of multiple bHLH transcription factors and EPF ligands to more precisely control stomatal patterning in later diverging plant lineages. We also observed that when P. patens sporophyte capsules mature in wet conditions, stomata are typically plugged whereas under drier conditions this is not the case; instead, mucilage drying leads to hollow sub-stomatal cavities. This appears to aid capsule drying and provides further evidence for early land plant stomata contributing to capsule rupture and spore release

    Conjugate gradient algorithms and the Galerkin boundary element method

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/science/journal/08981221 Copyright Elsevier Ltd. DOI: 10.1016/j.camwa.2004.02.002Peer reviewe

    Studies on a bovine Babesia transmitted by Hyalomma marginatum rufipes Koch, 1844

    Get PDF
    A Babesia sp. was recently observed in Hyalomma marginatum rufipes and found to be transmissible to bovines. Further observations were carried out on this parasite and a study made of the morphology of stages in both erythrocytes and tick haemolymph. Apart from Babesia divergens intra-erythrocytic parasites were not readily distinguishable from bovine Babesia spp. Merozoites in tick haemolymph morphologically resembled those of Babesia bigemina, but they were significantly larger. This Babesia sp. proved to be highly infective for adult H. m. rufipes, with transmission taking place transovarially and next generation nymphae and adults transmitting the infection. Features of the infection were its very low pathogenicity, even in splenectomized animals, and the tendency of parasitized erythrocytes to accumulate in capillaries. Serologically, this species could be differentiated from Babesia bigemina, B. divergens, B. bovis and B. major. A serological survey of 25 farms showed a wide distribution of this species in South Africa and its high rate of transmission on most properties. It was concluded that this is a true but hitherto undescribed bovine Babesia sp. and the name Babesia occultans n. sp. is proposed.The articles have been scanned in colour with a HP Scanjet 5590; 600dpi. Adobe Acrobat XI Pro was used to OCR the text and also for the merging and conversion to the final presentation PDF-format
    corecore