732 research outputs found

    B->gamma e nu Transitions from QCD Sum Rules

    Full text link
    B->gamma e nu transitions have recently been studied in the framework of QCD factorization. The attractiveness of this channel for such an analysis lies in the fact that, at least in the heavy quark limit, the only hadron involved is the B meson itself, so one expects a very simple description of the form factor in terms of a convolution of the B meson distribution amplitude with a perturbative kernel. This description, however, does not include contributions suppressed by powers of the b quark mass. In this letter, we calculate corrections to the factorized expression which are induced by the ``soft'' hadronic component of the photon. We demonstrate that the power-suppression of these terms is numerically not effective for physical values of the bb quark mass and that they increase the form factor by about 30% at zero momentum transfer. We also derive a sum rule for lambda_B, the first negative moment of the B meson distribution amplitude, and find lambda_B = 0.6 GeV (to leading order in QCD).Comment: 13 pages, 5 figure

    One-Loop Determinant of Dirac Operator in Non-Renormalizable Models

    Get PDF
    We use proper-time regularizations to define the one-loop fermion determinant in the form suggested by Gasser and Leutwyler some years ago. We show how to obtain the polynomial by which this definition of ln det D needs to be modified in order to arrive at the fermion determinant whose modulus is invarinat under chiral transformations. As an example it is shown how the fundamental symmetries associated with the NJL model are preserved in a consistent way.Comment: 8 pages, LaTe

    Charm Effects in the MSˉ\bar{MS} Bottom Quark Mass from Υ\Upsilon Mesons

    Full text link
    We study the shift in the Υ\Upsilon mass due to a non-zero charm quark mass. This shift affects the value of the MSˉ\bar{\rm MS} bb-quark mass extracted from the Υ\Upsilon system by about -20 MeV, due to an incomplete cancellation of terms that are non-analytic in the charm quark mass. The precise size of the shift depends on unknown higher order corrections, and might have a considerable uncertainty if they are large.Comment: 7 pages, revtex, 2 postscript figure

    Vector Meson Photoproduction from the BFKL Equation II: Phenomenology

    Full text link
    Diffractive vector meson photoproduction accompanied by proton dissociation is studied for large momentum transfer. The process is described by the non-forward BFKL equation which we use to compare to data collected at the HERA collider.Comment: 39 pages, 29 figure

    Convergence of the expansion of the Laplace-Borel integral in perturbative QCD improved by conformal mapping

    Get PDF
    The optimal conformal mapping of the Borel plane was recently used to accelerate the convergence of the perturbation expansions in QCD. In this work we discuss the relevance of the method for the calculation of the Laplace-Borel integral expressing formally the QCD Green functions. We define an optimal expansion of the Laplace-Borel integral in the principal value prescription and establish conditions under which the expansion is convergent.Comment: 10 pages, no figure

    Analytic structure in the coupling constant plane in perturbative QCD

    Full text link
    We investigate the analytic structure of the Borel-summed perturbative QCD amplitudes in the complex plane of the coupling constant. Using the method of inverse Mellin transform, we show that the prescription dependent Borel-Laplace integral can be cast, under some conditions, into the form of a dispersion relation in the a-plane. We also discuss some recent works relating resummation prescriptions, renormalons and nonperturbative effects, and show that a method proposed recently for obtaining QCD nonperturbative condensates from perturbation theory is based on special assumptions about the analytic structure in the coupling plane that are not valid in QCD.Comment: 14 pages, revtex4, 1 eps-figur

    Schur functions and their realizations in the slice hyperholomorphic setting

    Get PDF
    we start the study of Schur analysis in the quaternionic setting using the theory of slice hyperholomorphic functions. The novelty of our approach is that slice hyperholomorphic functions allows to write realizations in terms of a suitable resolvent, the so called S-resolvent operator and to extend several results that hold in the complex case to the quaternionic case. We discuss reproducing kernels, positive definite functions in this setting and we show how they can be obtained in our setting using the extension operator and the slice regular product. We define Schur multipliers, and find their co-isometric realization in terms of the associated de Branges-Rovnyak space

    Calculations of binding energies and masses of heavy quarkonia using renormalon cancellation

    Full text link
    We use various methods of Borel integration to calculate the binding ground energies and masses of b-bbar and t-tbar quarkonia. The methods take into account the leading infrared renormalon structure of the hard+soft part of the binding energies E(s), and of the corresponding quark pole masses m_q, where the contributions of these singularities in M(s) = 2 m_q + E(s) cancel. Beforehand, we carry out the separation of the binding energy into its hard+soft and ultrasoft parts. The resummation formalisms are applied to expansions of m_q and E(s) in terms of quantities which do not involve renormalon ambiguity, such as MSbar quark mass, and alpha_s. The renormalization scales are different in calculations of m_q, E(s) and E(us). The MSbar mass of b quark is extracted, and the binding energies of t-tbar and the peak (resonance) energies for (t+tbar) production are obtained.Comment: 23 pages, 8 double figures, revtex4; the version to appear in Phys.Rev.D; extended discussion between Eqs.(25) and (26); the paragraph between Eqs.(32) and (33) is new and explains the numerical dependence of the residue parameter on the factorization scale; several new references were added; acknowledgments were modified; the numerical results are unchange

    αs\alpha_s from τ\tau decays: contour-improved versus fixed-order summation in a new QCD perturbation expansion

    Full text link
    We consider the determination of αs\alpha_s from τ\tau hadronic decays, by investigating the contour-improved (CI) and the fixed-order (FO) renormalization group summations in the frame of a new perturbation expansion of QCD, which incorporates in a systematic way the available information about the divergent character of the series. The new expansion functions, which replace the powers of the coupling, are defined by the analytic continuation in the Borel complex plane, achieved through an optimal conformal mapping. Using a physical model recently discussed by Beneke and Jamin, we show that the new CIPT approaches the true results with great precision when the perturbative order is increased, while the new FOPT gives a less accurate description in the regions where the imaginary logarithms present in the expansion of the running coupling are large. With the new expansions, the discrepancy of 0.024 in αs(mτ2)\alpha_s(m_\tau^2) between the standard CI and FO summations is reduced to only 0.009. From the new CIPT we predict αs(mτ2)=0.3200.009+0.011\alpha_s(m_\tau^2)= 0.320 ^{+0.011}_{-0.009}, which practically coincides with the result of the standard FOPT, but has a more solid theoretical basis

    Research applications of primary biodiversity databases in the digital age

    Get PDF
    Our world is in the midst of unprecedented change-climate shifts and sustained, widespread habitat degradation have led to dramatic declines in biodiversity rivaling historical extinction events. At the same time, new approaches to publishing and integrating previously disconnected data resources promise to help provide the evidence needed for more efficient and effective conservation and management. Stakeholders have invested considerable resources to contribute to online databases of species occurrences. However, estimates suggest that only 10% of biocollections are available in digital form. The biocollections community must therefore continue to promote digitization efforts, which in part requires demonstrating compelling applications of the data. Our overarching goal is therefore to determine trends in use of mobilized species occurrence data since 2010, as online systems have grown and now provide over one billion records. To do this, we characterized 501 papers that use openly accessible biodiversity databases. Our standardized tagging protocol was based on key topics of interest, including: database(s) used, taxa addressed, general uses of data, other data types linked to species occurrence data, and data quality issues addressed
    corecore