29 research outputs found

    Fabry-Perot interference and spin filtering in carbon nanotubes

    Full text link
    We study the two-terminal transport properties of a metallic single-walled carbon nanotube with good contacts to electrodes, which have recently been shown [W. Liang et al, Nature 441, 665-669 (2001)] to conduct ballistically with weak backscattering occurring mainly at the two contacts. The measured conductance, as a function of bias and gate voltages, shows an oscillating pattern of quantum interference. We show how such patterns can be understood and calculated, taking into account Luttinger liquid effects resulting from strong Coulomb interactions in the nanotube. We treat back-scattering in the contacts perturbatively and use the Keldysh formalism to treat non-equilibrium effects due to the non-zero bias voltage. Going beyond current experiments, we include the effects of possible ferromagnetic polarization of the leads to describe spin transport in carbon nanotubes. We thereby describe both incoherent spin injection and coherent resonant spin transport between the two leads. Spin currents can be produced in both ways, but only the latter allow this spin current to be controlled using an external gate. In all cases, the spin currents, charge currents, and magnetization of the nanotube exhibit components varying quasiperiodically with bias voltage, approximately as a superposition of periodic interference oscillations of spin- and charge-carrying ``quasiparticles'' in the nanotube, each with its own period. The amplitude of the higher-period signal is largest in single-mode quantum wires, and is somewhat suppressed in metallic nanotubes due to their sub-band degeneracy.Comment: 12 pages, 6 figure

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T \sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm2^{-2} s1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T \sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-

    A frequent hypofunctional IRAK2 variant is associated with reduced spontaneous hepatitis C virus clearance.

    No full text
    UNLABELLED: Patients carrying very rare loss-of-function mutations in interleukin-1 receptor-associated kinase 4 (IRAK4), a critical signaling mediator in Toll-like receptor signaling, are severely immunodeficient, highlighting the paramount role of IRAK kinases in innate immunity. We discovered a comparatively frequent coding variant of the enigmatic human IRAK2, L392V (rs3844283), which is found homozygously in ∼15% of Caucasians, to be associated with a reduced ability to induce interferon-alpha in primary human plasmacytoid dendritic cells in response to hepatitis C virus (HCV). Cytokine production in response to purified Toll-like receptor agonists was also impaired. Additionally, rs3844283 was epidemiologically associated with a chronic course of HCV infection in two independent HCV cohorts and emerged as an independent predictor of chronic HCV disease. Mechanistically, IRAK2 L392V showed intact binding to, but impaired ubiquitination of, tumor necrosis factor receptor-associated factor 6, a vital step in signal transduction. CONCLUSION: Our study highlights IRAK2 and its genetic variants as critical factors and potentially novel biomarkers for human antiviral innate immunity. (Hepatology 2015;62:1375-1387)

    Coma scales: a historical review

    No full text
    OBJECTIVE: To describe the most important coma scales developed in the last fifty years. METHOD: A review of the literature between 1969 and 2009 in the Medline and Scielo databases was carried out using the following keywords: coma scales, coma, disorders of consciousness, coma score and levels of coma. RESULTS: Five main scales were found in chronological order: the Jouvet coma scale, the Moscow coma scale, the Glasgow coma scale (GCS), the Bozza-Marrubini scale and the FOUR score (Full Outline of UnResponsiveness), as well as other scales that have had less impact and are rarely used outside their country of origin. DISCUSSION: Of the five main scales, the GCS is by far the most widely used. It is easy to apply and very suitable for cases of traumatic brain injury (TBI). However, it has shortcomings, such as the fact that the speech component in intubated patients cannot be tested. While the Jouvet scale is quite sensitive, particularly for levels of consciousness closer to normal levels, it is difficult to use. The Moscow scale has good predictive value but is little used by the medical community. The FOUR score is easy to apply and provides more neurological details than the Glasgow scale
    corecore