359 research outputs found

    Unravelling the Mechanism of Summer Monsoon Rainfall Modes over the West Coast of India using Model Simulations

    Get PDF
    A transition from a predominantly offshore to an onshore rainfall phase over the west coast of India was simulated using three one-way nested domains with 12-, 4-, and 1.33-km horizontal grid spacing in the Weather Research and Forecasting model. The mechanism of offshore-onshore rainfall oscillation and the orographic effects of the Western Ghats are studied. A convective parameterization scheme was employed only in the 12-km domain. A trough extending offshore from the west coast facilitates offshore rainfall. This trough is absent during the onshore phase, and rainfall occurs over the coast mainly via orographic uplift by the Western Ghats. The model overestimates rainfall over the Western Ghats at all resolutions as it consistently underestimates the boundary layer stratification along the coast. Weaker stratification weakens the blocking effect of the Western Ghats, resulting in anomalous deep convection and rainfall over its windward slopes. The 4- and 1.33-km domains simulate the offshore-to-onshore transition of rainfall but fail to capture a sufficient contrast in rainfall between land and sea compared to observations. The 12-km domain produces light rainfall, anchored along the coast, throughout the simulation period, and hence gravely underestimates the offshore rainfall. The offshore rainfall persisted in the 4- and 1.33-km domains in a sensitivity experiment in which the Western Ghats were flattened. This suggests that orographic effects do not significantly influence offshore rainfall. In another experiment, the convective parameterization scheme in the 12-km domain was turned off. This experiment simulated the offshore and onshore rainfall phases correctly to some extent but the rainfall intensity was unrealistically high. Thus, a model with a horizontal grid spacing of O(∼ 1 km), in which convection evolves explicitly, is desired for simulating the west coast rainfall variations. However, improvements in the representation of boundary layer processes are needed to capture the land-sea contrast

    Genomic DNA transposition induced by human PGBD5

    Get PDF
    Transposons are mobile genetic elements that are found in nearly all organisms, including humans. Mobilization of DNA transposons by transposase enzymes can cause genomic rearrangements, but our knowledge of human genes derived from transposases is limited. In this study, we find that the protein encoded by human PGBD5, the most evolutionarily conserved transposable element-derived gene in vertebrates, can induce stereotypical cut-and-paste DNA transposition in human cells. Genomic integration activity of PGBD5 requires distinct aspartic acid residues in its transposase domain, and specific DNA sequences containing inverted terminal repeats with similarity to piggyBac transposons. DNA transposition catalyzed by PGBD5 in human cells occurs genome-wide, with precise transposon excision and preference for insertion at TTAA sites. The apparent conservation of DNA transposition activity by PGBD5 suggests that genomic remodeling contributes to its biological function

    A Raman Study of Morphotropic Phase Boundary in PbZr1-xTixO3 at low temperatures

    Full text link
    Raman spectra of PbZr1-xTixO3 ceramics with titanium concentration varying between 0.40 and 0.60 were measured at 7 K. By observing the concentration-frequency dependence of vibrational modes, we identified the boundaries among rhombohedral, monoclinic, and tetragonal ferroelectric phases. The analysis of the spectra was made in the view of theory group analysis making possible the assignment of some modes for the monoclinic phase.Comment: 5 pages, 4 figure

    Directional dark matter readout with a novel multi-mesh ThGEM for SF6 negative ion operation

    Get PDF
    Direct searches for Weakly Interacting Massive Particle (WIMP) dark matter could greatly benefit from directional measurement of the expected induced nuclear recoils. Gas-based Time Projection Chambers (TPCs) offer potential for this, opening the possibility of measuring WIMP signals below the so-called neutrino floor but also of directional measurement of recoils induced by neutrinos from the Sun, for instance as proposed by the CYGNUS collaboration. Presented here for the first time are results from a Multi-Mesh Thick Gas Electron Multiplier (MM-ThGEM) using negative ion gases for operation with such a directional dark matter TPC. Negative ion drift gases are favoured for directionality due to their low diffusion characteristics. The multiple internal mesh structure is designed to provide a high gain amplification stage when coupled to future large area Micromegas, strip or pixel charge readout planes. Experimental results and simulations are presented of MM-ThGEM gain and functionality using low pressure pure CF4, SF6 and SF6:CF4 mixtures irradiated with alpha particles and 55Fe x-rays. The concept is found to work well, providing stable operation with gains over 103 in pure SF6

    Squark Flavor Violation at the LHC

    Full text link
    We consider the prospects for measuring squark flavor violation through the signal of single top production at the LHC. We study this signal in the context of R-symmetric supersymmetry, which allows for large flavor violation in the squark sector, however the results can also be generalized to the MSSM. The single top signal arises from squark pair production in which one squark decays to a top and gaugino, whereas the other squark decays to a non-top quark and gaugino. We study three decay patterns: (I) squark decay into a quark and neutralino LSP; (II) squark decay into a quark and neutralino NLSP, with subsequent decay of the NLSP to a photon and gravitino; (III) squark decay into a quark and chargino NLSP, with subsequent decay of the NLSP to a H^\pm/W^\pm and gravitino. Case II is the most promising, when the NLSP decay is prompt, since every event contains two hard photons that can be used to tag the events, reducing the background to a negligible level. Case I is promising if the neutralino LSP is bino-like. We carefully consider large SM backgrounds and identify a series of cuts to isolate the signal. Case III can occur in the MRSSM with Higgsino-like lightest gauginos. Due to the large Higgs coupling, squarks preferentially decay to top quarks, substantially reducing the potential flavor violating signal. Nevertheless, the flavor violating signal might still be identifiable if the chargino NLSP is long-lived.Comment: 9 figures and 4 table

    Cosmological results from the RAISIN survey: Using type Ia supernovae in the near infrared as a novel path to measure the dark energy equation of state

    Get PDF
    Jones et al.Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically distant sample of 37 SNe Ia (0.2 ≲ z ≲ 0.6) discovered by Pan-STARRS and the Dark Energy Survey. By comparing higher-z HST data with 42 SNe Ia at z < 0.1 observed in the NIR by the Carnegie Supernova Project, we construct a Hubble diagram from NIR observations (with only time of maximum light and some selection cuts from optical photometry) to pursue a unique avenue to constrain the dark energy equation-of-state parameter, w. We analyze the dependence of the full set of Hubble residuals on the SN Ia host galaxy mass and find Hubble residual steps of size ∼0.06-0.1 mag with 1.5σ−2.5σ significance depending on the method and step location used. Combining our NIR sample with cosmic microwave background constraints, we find 1 + w = −0.17 ± 0.12 (statistical + systematic errors). The largest systematic errors are the redshift-dependent SN selection biases and the properties of the NIR mass step. We also use these data to measure H0 = 75.9 ± 2.2 km s−1 Mpc−1 from stars with geometric distance calibration in the hosts of eight SNe Ia observed in the NIR versus H0 = 71.2 ± 3.8 km s−1 Mpc−1 using an inverse distance ladder approach tied to Planck. Using optical data, we find 1 + w = −0.10 ± 0.09, and with optical and NIR data combined, we find 1 + w = −0.06 ± 0.07; these shifts of up to ∼0.11 in w could point to inconsistency in the optical versus NIR SN models. There will be many opportunities to improve this NIR measurement and better understand systematic uncertainties through larger low-z samples, new light-curve models, calibration improvements, and eventually by building high-z samples from the Roman Space Telescope.Support for this work was provided by a Gordon and Betty Moore Foundation postdoctoral fellowship to D.O.J.at the University of California, Santa Cruz, and by NASA through the NASA Hubble Fellowship grant HF2-51462.001 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. The Cambridge University team acknowledges support from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC grant agreement No. 101002652); the ASTROSTAT-II collaboration, enabled by the Horizon 2020, EU grant agreement No. 873089; and the Cambridge Centre for Doctoral Training in Data-Intensive Science funded by the UK Science and Technology Facilities Council (STFC). L.G. acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación (MCIN), the Agencia Estatal de Investigación (AEI) 10.13039/ 501100011033, and the European Social Fund (ESF) “Investing in your future” under the 2019 Ramón y Cajal program RYC2019027683-I and the PID2020-115253GA-I00 HOSTFLOWS project, from Centro Superior de Investigaciones Científicas (CSIC) under the PIE project 20215AT016, and the program Unidad de Excelencia Mara de Maeztu CEX2020-001058-M. M. R.S. is supported by the NSF Graduate Research Fellowship Program under grant 1842400. The UCSC team is supported in part by NASA grants 14-WPS14-0048, NNG16PJ34C, and NNG17PX03C; NSF grants AST-1518052 and AST-1815935; NASA through grant No. AR-14296 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555; the Gordon and Betty Moore Foundation; the Heising-Simons Foundation; and fellowships from the Alfred P. Sloan Foundation and the David and Lucile Packard Foundation to R.J.F. Based on observations with the NASA/ESA Hubble Space Telescope obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for program Nos. 13046 and 14216 was provided through grants from the STScI under NASA contract NAS5-26555. The Carnegie Supernova Project has been supported by the National Science Foundation under grants AST0306969, AST0607438, AST1008343, AST1613426, AST1613455, and AST1613472. L.K. thanks the UKRI Future Leaders Fellowship for support through the grant MR/T01881X/ 1. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is funded by the National Aeronautics and Space Administration and operated by the California Institute of Technology.Peer reviewe

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure

    Astronomical Distance Determination in the Space Age: Secondary Distance Indicators

    Get PDF
    The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)
    corecore