11 research outputs found

    Quantifying the frequency and volume of urine deposition by grazing sheep using tri-axial accelerometers

    Get PDF
    Urine patches deposited in pasture by grazing animals are sites of reactive nitrogen (N) loss to the environment due to high concentrations of N exceeding pasture uptake requirements. In order to upscale N losses from the urine patch, several urination parameters are required, including where, when and how often urination events occur as well as the volume and chemical composition. There are limited data available in this respect, especially for sheep. Here, we seek to address this knowledge gap by using non-invasive sensor-based technology (accelerometers) on ewes grazing in situ, using a Boolean algorithm to detect urination events in the accelerometer signal. We conducted an initial study with penned Welsh Mountain ewes (n = 5), with accelerometers attached to the hind, to derive urine flow rate and to determine whether urine volume could be estimated from ewe squat time. Then accelerometers attached to the hind of Welsh Mountain ewes (n = 30 at each site) were used to investigate the frequency of sheep urination events (n = 35 946) whilst grazing two extensively managed upland pastures (semi-improved and unimproved) across two seasons (spring and autumn) at each site (35–40 days each). Sheep urinated at a frequency of 10.2 ± 0.2 and 8.1 ± 0.3 times per day in the spring and autumn, respectively, while grazing the semi-improved pasture. Urination frequency was greater (19.0 ± 0.4 and 15.3 ± 0.3 times per day in the spring and autumn, respectively) in the unimproved pasture. Ewe squat duration could be reliably used to predict the volume of urine deposited per event and was thus used to estimate mean daily urine production volumes. Sheep urinated at a rate of 16.6 mL/s and, across the entire dataset, sheep squatted for an average of 9.62 ± 0.03 s per squatting event, producing an estimated average individual urine event volume of 159 ± 1 mL (n = 35 946 events), ranging between 17 and 745 mL (for squat durations of 1 to 45 s). The estimated mean daily urine volume was 2.15 ± 0.04 L (n = 2 669 days) across the entire dataset. The data will be useful for modelling studies estimating N losses (e.g. ammonia (NH3) volatilisation, nitrous oxide (N2O) emission via nitrification and denitrification and nitrate (NO3−) leaching) from urine patches

    Riparian buffer strips influence nitrogen losses as nitrous oxide and leached N from upslope permanent pasture

    Get PDF
    Riparian buffer strips can have a significant role in reducing nitrogen (N) transfers from agricultural land to freshwater primarily via denitrification and plant uptake processes, but an unintended trade-off can be elevated nitrous oxide (N2O) production rates. Against this context, our replicated bounded plot scale study investigated N2O emissions from un-grazed ryegrass pasture served by three types of riparian buffer strips with different vegetation, comprising: (i) grass riparian buffer with novel deep-rooting species, (ii) willow (young trees at establishment phase) riparian buffer, and (iii) deciduous woodland (also young trees at establishment phase) riparian buffer. The experimental control was ryegrass pasture with no buffer strip. N2O emissions were measured at the same time as total oxidized N in run-off, and soil and environmental characteristics in the ri parian buffer strips and upslope pasture between 2018 and 2019. During most of the sampling days, the no-buffer control treatment showed significantly (P < 0.05) greater N2O fluxes and cumulative N2O emissions compared to the remainder of the treatments. Our results also showed that the grass riparian buffer strip is a sink of N2O equivalent to − 2310.2 g N2O-N ha− 1 day− 1 (95% confidence interval:− 535.5 to 492). Event-based water quality results obtained during storms (12 November 2018 and 11 February 2019) showed that the willow riparian buffer treatment had the highest flow-weighted mean N concentrations (N-FWMC) of 0.041 ± 0.022 and 0.031 ± 0.015 mg N L− 1, when compared to the other treatments. Our 9-month experiment therefore, shows that ri parian buffer strips with novel deep-rooting grass can therefore potentially address emissions to both water and air. The results imply that over a shorter timeline similar to the current study, the grass riparian buffer strip can potentially address N emission to both air and water, particularly when serving a permanent pasture in similar settings as the current experiment.Fil: Dlamini, J.C. Crop and Climate Sciences. Departament of Soil; Sudáfrica. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido. University of Pretoria. Department of Plant and Soil Sciences; SudáfricaFil: Cardenas, L.M. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido.Fil: Tesfamarian, E.H. University of Pretoria. Department of Plant and Soil Sciences; SudáfricaFil: Dunn, R.M. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido.Fil: Loick, N. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido.Fil: Charteris, A.F. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido.Fil: Cocciaglia, L. Università degli Studi di Perugia. Dipartimento di Scienze Agrarie, Alimentari e Ambientali; ItaliaFil: Vangeli, Sebastián. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Manejo y Conservación de Suelo; ArgentinaFil: Blackwell, M.S.A. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido.Fil: Upadhayay, H.R. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido.Fil: Hawkins, J.M.B. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido.Fil: Evans, J. Rothamsted Research. Computational and Analytical Sciences; Reino UnidoFil: Collins, A.L. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido

    Meta-analysis of global livestock urine-derived nitrous oxide emissions from agricultural soils.

    No full text
    Abstract:Nitrous oxide (N2O) is an air pollutant of major environmental concern, with agriculture representing 60% of anthropogenic global N2O emissions. Much of the N2O emissions from livestock production systems result from transformation of N deposited to soil within animal excreta. There exists a substantial body of literature on urine patch N2O dynamics, we aimed to identify key controlling factors influencing N2O emissions and to aid understanding of knowledge gaps to improve GHG reporting and prioritize future research. We conducted an extensive literature review and random effect meta?analysis (using REML) of results to identify key relationships between multiple potential independent factors and global N2O emissions factors (EFs) from urine patches. Mean air temperature, soil pH and ruminant animal species (sheep or cow) were significant factors influencing the EFs reviewed. However, several factors that are known to influence N2O emissions, such as animal diet and urine composition, could not be considered due to the lack of reported data. The review highlighted a widespread tendency for inadequate metadata and uncertainty reporting in the published studies, as well as the limited geographical extent of investigations, which are more often conducted in temperate regions thus far. Therefore, here we give recommendations for factors that are likely to affect the EFs and should be included in all future studies, these include the following: soil pH and texture; experimental set?up; direct measurement of soil moisture and temperature during the study period; amount and composition of urine applied; animal type and diet; N2O emissions with a measure of uncertainty; data from a control with zero?N application and meteorological data

    Relative contributions of bacteria and fungi to nitrous oxide emissions following nitrate application in soils representing different land uses

    No full text
    Bacteria and fungi have been shown to produce nitrous oxide (N2O) during denitrification, but their contribution after nitrate (NO3−) application to soil is not clearly established. In a microcosm experiment, the relative contribution of bacteria and fungi to N2O and carbon dioxide (CO2) production by four contrasting soils representing different land uses after KNO3 addition was studied. The soils were daily wetted to 80% water-filled pore space (WFPS) and kept under greenhouse conditions for 10 days. The fungicide cycloheximide and the bactericide streptomycin were used to determine the possible microbial origin of the N2O and CO2 emissions. Non-target effects of the antibiotics on the emission of N2O and CO2 were evaluated using the inhibitor additivity ratio (IAR). The abundance of the bacterial and fungal communities was estimated by quantitative PCR (qPCR) of the bacterial 16S rRNA gene and the fungal internal transcribed spacer (ITS) region, respectively. The gene copy number of bacterial denitrifiers was calculated after quantification of the nirK, nirS, norB, nosZI and nosZII genes. After 10 d, regardless of the soil type, the cumulative N2O emission from the soils treated with cycloheximide or streptomycin were similar. In all the four soils, N2O fluxes were greater (on average 1.8 ± 0.3 times) in soils amended with the fungicide than with the bactericide during incubation for the first 48–96 h. Greater N2O emissions (on average 1.7 ± 0.2 times) were detected in soils where bacteria were inhibited in comparison to those treated with the fungicide from 96 to 240 h. On average, 68.5% of the total CO2 emitted during the 10-d incubation period was produced in soils treated with the fungicide and 31.5% in those treated with the bactericide. The greater contribution of bacteria to the production of N2O than fungi during the first 48–96 h was possibly due to a faster used of nitrate. Variations in the abundance of bacterial 16S rRNA genes, the ITS region, and the nirK, nirS, norB and nosZI bacterial denitrification genes indicated that the antibiotics used to prevent the growth of bacteria and fungi were effective during incubation. These results suggest that both bacteria and fungi should be considered when designing and applying greenhouse gas mitigation strategies in soils and that their relative contribution to produce N2O and CO2 can vary with time and nitrate availability

    Genome-wide association study identifies genetic risk underlying primary rhegmatogenous retinal detachment

    No full text
    Item does not contain fulltextRhegmatogenous retinal detachment (RRD) is an important cause of vision loss and can potentially lead to blindness. The underlying pathogenesis is complex and incompletely understood. We applied a two-stage genetic association discovery phase followed by a replication phase in a combined total of 2833 RRD cases and 7871 controls. The discovery phase involved a genome-wide association scan of 867 affected individuals and 1953 controls from Scotland, followed by genotyping and testing 4347 highest ranking or candidate single nucleotide polymorphisms (SNPs) in independent sets of cases (1000) and controls (2912) of Dutch and British origin. None of the SNPs selected reached a Bonferroni-corrected threshold for significance (P < 1.27 x 10(-7)). The strongest association, for rs12960119 (P = 1.58 x 10(-7)) located within an intron of the SS18 gene. Further testing was carried out in independent case-control series from London (846 cases) and Croatia (120 cases). The combined meta-analysis identified one association reaching genome-wide significance for rs267738 (OR = 1.29, P = 2.11 x 10(-8)), a missense coding SNP and eQTL for CERS2 encoding the protein ceramide synthase 2. Several of the top signals showing suggestive significance in the combined meta-analysis encompassed genes with a documented role in cell adhesion or migration, including SS18, TIAM1, TSTA3 and LDB2, which warrant further investigation. This first genetic association study of RRD supports a polygenic component underlying RRD risk since 27.4% of the underlying RRD liability could be explained by the collective additive effects of the genotyped SNP from the discovery genome-wide scan

    Valores econômicos para habilidade de permanência e probabilidade de prenhez aos 14 meses em bovinos de corte Economic value for stayability and heifer pregnancy at 14 months in beef cattle herds

    No full text
    Estimaram-se os valores econômicos para as características reprodutivas de probabilidade de prenhez aos 14 meses (PP14) e habilidade de permanência (HP). Foram simulados dados de uma propriedade pecuária de corte, especializada na fase de cria para aplicação de modelagem bioeconômica. A PP14 foi avaliada considerando taxas percentuais crescentes de prenhez de novilhas aos 14 meses de idade, e a HP foi avaliada a partir da diminuição da taxa de descarte de vacas. O valor econômico da PP14 foi estimado em R695,97porunidadepercentualdeprenhezdenovilhasaos14meses,avaliadaparaosistemaprodutivo,enquantoovalorecono^micodaHPvariouemfunc\ca~odocustodecompradanovilhadereposic\ca~o.Osvalores,avaliadosporunidadepercentualdediminuic\ca~onataxadedescartedevacas,foramdeR695,97 por unidade percentual de prenhez de novilhas aos 14 meses, avaliada para o sistema produtivo, enquanto o valor econômico da HP variou em função do custo de compra da novilha de reposição. Os valores, avaliados por unidade percentual de diminuição na taxa de descarte de vacas, foram de R-2.140,00, R140,00eR-140,00 e R2.860,00 para o custo de compra da novilha de R500,00,R500,00, R700,00 e R1.000,00,respectivamente.Osvaloresecono^micosnegativosparaHPindicaramqueovalordedescartedavacasuperouocustodecompradanovilha.Quantomaiorforovalorinvestidonareposic\ca~odenovilhasmaiorseraˊaimporta^nciaecono^micadoHP.<br>Economicvaluesfortworeproductivetraits,percentageofheiferspregnantat14monthsofage(PP14)andstayability(HP),wereestimatedusingsimulatedbioeconomicmodelingdataforacowcalfproductionsystem.ChangesinHPweremodeledasdecreasesinpercentageofannualcullingofcows.TheeconomicvalueofPP14wasR1.000,00, respectivamente. Os valores econômicos negativos para HP indicaram que o valor de descarte da vaca superou o custo de compra da novilha. Quanto maior for o valor investido na reposição de novilhas maior será a importância econômica do HP.<br>Economic values for two reproductive traits, percentage of heifers pregnant at 14 months of age (PP14) and stayability (HP), were estimated using simulated bioeconomic modeling data for a cow-calf production system. Changes in HP were modeled as decreases in percentage of annual culling of cows. The economic value of PP14 was R695.97 per one unit increase in percentage of heifers pregnant at 14 months of age, while the economic value of HP varied according to the simulated cost of replacement heifers. Economic values per unit decrease in cow culling percentage were R2,140.00,R-2,140.00, R-140.00 and R2,860.00forheiferpricesofR2,860.00 for heifer prices of R500, R700andR700 and R1,000, respectively. Economic values for HP were negative when the salvage value of a cull cow was higher than the cost of a replacement heifer. Thus higher investment for replacement heifers increases the importance of stayability in a cattle herd
    corecore