147 research outputs found

    Pregnancy-related fibroid reduction

    Get PDF
    We tested the hypothesis that the protective effect of parity on fibroids is due to direct pregnancy-related effects by following women from early pregnancy to postpartum period with ultrasound. Of 171 women with one initial fibroid, 36% had no identifiable fibroid at the time of postpartum ultrasound, and 79% of the remaining fibroids decreased in size

    Constraining recent ice flow history at Korff Ice Rise, West Antarctica, using radar and seismic measurements of ice fabric

    Get PDF
    The crystal orientation fabric of ice reflects its flow history, information which is required to better constrain projections of future ice sheet behavior. Here we present a novel combination of polarimetric phase‐sensitive radar and seismic anisotropy measurements to provide independent and consistent constraints on ice fabric at Korff Ice Rise, within the Weddell Sea sector of West Antarctica. The nature and depth distribution of fabric in the ice column is constrained using the azimuthal variation in (1) the received power anomaly and phase difference of polarimetric vertical radar soundings and (2) seismic velocities and shear wave splitting measurements. Radar and seismic observations are modeled separately to determine the nature and strength of fabric within the ice column. Both methods indicate ice fabric above 200‐m depth which is consistent with present‐day ice‐divide flow. However, both measurements also indicate an oblique girdle fabric below 230‐m depth within the ice column, inconsistent with steady state divide flow. Our interpretation is that this deeper fabric is a remnant fabric from a previous episode of flow, which is currently being overwritten by ongoing fabric development associated with the present‐day flow regime. The preexisting fabric is consistent with ice flow from the south prior to ice‐divide formation, in agreement with models of Holocene ice sheet evolution. These findings apply new constraints to the flow history at Korff Ice Rise prior to divide formation and demonstrate the capacity of radar and seismic measurements to map fabric and thus constrain past ice flow

    Distributed Acoustic Sensing (DAS) for natural microseismicity studies: A case study from Antarctica

    Get PDF
    Icequakes, microseismic earthquakes at glaciers, offer insights into the dynamics of ice sheets. For the first time in the Antarctic, we explore the use of fiber optic cables as Distributed Acoustic Sensors (DAS) as a new approach for monitoring basal icequakes. We present the use of DAS for studying icequakes as a case study for the application of DAS to microseismic datasets in other geological settings. Fiber was deployed on the ice surface at Rutford Ice Stream in two different configurations. We compare the performance of DAS with a conventional geophone network for: microseismic detection and location; resolving source and noise spectra; source mechanism inversion; and measuring anisotropic shear-wave splitting parameters. Both DAS array geometries detect fewer events than the geophone array. However, DAS is superior to geophones for recording the microseism signal, suggesting the applicability of DAS for ambient noise interferometry. We also present the first full-waveform source mechanism inversions using DAS anywhere, successfully showing the horizontal stick-slip nature of the icequakes. In addition, we develop an approach to use a 2D DAS array geometry as an effective multi-component sensor capable of accurately characterising shear-wave splitting due to the anisotropic ice fabric. Although our observations originate from a glacial environment, the methodology and implications of this work are relevant for employing DAS in other microseismic environments

    Surface state atoms and their contribution to the surface tension of quantum liquids

    Full text link
    We investigate the new type of excitations on the surface of liquid helium. These excitations, called surfons, appear because helium atoms have discrete energy level at the liquid surface, being attracted to the surface by the van der Waals force and repulsed at a hard-core interatomic distance. The concentration of the surfons increases with temperature. The surfons propagate along the surface and form a two-dimensional gas. Basing on the simple model of the surfon microscopic structure, we estimate the surfon activation energy and effective mass for both helium isotopes. We also calculate the contribution of the surfons to the temperature dependence of the surface tension. This contribution explains the great and long-standing discrepancy between theory and experiment on this temperature dependence in both helium isotopes. The achieved agreement between our theory and experiment is extremely high. The comparison with experiment allows to extract the surfon activation energy and effective mass. The values of these surfon microscopic parameters are in a reasonable agreement with the calculated from the proposed simple model of surfon structure.Comment: 10 pages, 6 figure

    Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results

    Get PDF
    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 ± 0.1 fm s−2/√Hz or (0.54 ± 0.01) × 10−15 g/√Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 ± 0.3) fm/√Hz, about 2 orders of magnitude better than requirements. At f ≤ 0.5 mHz we observe a low-frequency tail that stays below 12 fm s−2/√Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA

    Analysis of fracture induced scattering of microseismic shear-waves

    Get PDF
    Fractures are pervasive features within the Earth’s crust and have a significant influence on the multi-physical response of the subsurface. The presence of coherent fracture sets often leads to observable seismic scattering enabling seismic techniques to remotely locate and characterise fracture systems. In this study, we confirm the general scale-dependence of seismic scattering and provide new results specific to shear-wave propagation. We do this by generating full waveform synthetics using finite-difference wave simulation within an isotropic background model containing explicit fractures. By considering a suite of fracture models having variable fracture density and fracture size, we examine the widening effect of wavelets due to scattering within a fractured medium by using several different approaches, such as root-mean-square envelope analysis, shear-wave polarisation distortion, differential attenuation analysis and peak frequency shifting. The analysis allows us to assess the scattering behavior of parametrised models in which the propagation direction is either normal or parallel to the fracture surfaces. The quantitative measures show strong observable deviations for fractures size on the order of or greater than the dominant seismic wavelength within the Mie and geometric scattering regime for both propagation normal and parallel to fracture strike. The results suggest that strong scattering is symptomatic of fractures having size on the same order of the probing seismic wave

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available
    corecore