118 research outputs found

    Barium stars, galactic populations and evolution

    Get PDF
    In this paper HIPPARCOS astrometric and kinematical data together with radial velocities from other sources are used to calibrate both luminosity and kinematics parameters of Ba stars and to classify them. We confirm the results of our previous paper (where we used data from the HIPPARCOS Input Catalogue), and show that Ba stars are an inhomogeneous group. Five distinct classes have been found i.e. some halo stars and four groups belonging to disk population: roughly super-giants, two groups of giants (one on the giant branch, the other at the clump location) and dwarfs, with a few subgiants mixed with them. The confirmed or suspected duplicity, the variability and the range of known orbital periods found in each group give coherent results supporting the scenario for Ba stars that are not too highly massive binary stars in any evolutionary stages but that all were previously enriched with Ba from a more evolved companion. The presence in the sample of a certain number of ``false'' Ba stars is confirmed. The estimates of age and mass are compatible with models for stars with a strong Ba anomaly. The mild Ba stars with an estimated mass higher than 3Msun_ may be either stars Ba enriched by themselves or ``true'' Ba stars, which imposes new constraints on models

    The Exact Correspondence between Phase Times and Dwell Times in a Symmetrical Quantum Tunneling Configuration

    Full text link
    The general and explicit relation between the phase time and the dwell time for quantum tunneling or scattering is investigated. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, here we demonstrate that these two distinct transit time definitions give connected results where, however, the phase time (group delay) accurately describes the exact position of the scattered particles. The analytical difficulties that arise when the stationary phase method is employed for obtaining phase (traversal) times are all overcome. Multiple wave packet decomposition allows us to recover the exact position of the reflected and transmitted waves in terms of the phase time, which, in addition to the exact relation between the phase time and the dwell time, leads to right interpretation for both of them.Comment: 11 pages, 2 figure

    Transitions from small to large Fermi momenta in a one-dimensional Kondo lattice model

    Full text link
    We study a one-dimensional system that consists of an electron gas coupled to a spin-1/2 chain by Kondo interaction away from half-filling. We show that zero-temperature transitions between phases with "small" and "large" Fermi momenta can be continuous. Such a continuous but Fermi-momentum-changing transition arises in the presence of spin anisotropy, from a Luttinger liquid with a small Fermi momentum to a Kondo-dimer phase with a large Fermi momentum. We have also added a frustrating next-nearest-neighbor interaction in the spin chain to show the possibility of a similar Fermi-momentum-changing transition, between the Kondo phase and a spin-Peierls phase, in the spin isotropic case. This transition, however, appears to involve a region in which the two phases coexist.Comment: The updated version clarifies the definitions of small and large Fermi momenta, the role of anisotropy, and how Kondo interaction affects Luttinger liquid phase. 12 pages, 5 figure

    Small Corrections to the Tunneling Phase Time Formulation

    Full text link
    After reexamining the above barrier diffusion problem where we notice that the wave packet collision implies the existence of {\em multiple} reflected and transmitted wave packets, we analyze the way of obtaining phase times for tunneling/reflecting particles in a particular colliding configuration where the idea of multiple peak decomposition is recovered. To partially overcome the analytical incongruities which frequently rise up when the stationary phase method is adopted for computing the (tunneling) phase time expressions, we present a theoretical exercise involving a symmetrical collision between two identical wave packets and a unidimensional squared potential barrier where the scattered wave packets can be recomposed by summing the amplitudes of simultaneously reflected and transmitted wave components so that the conditions for applying the stationary phase principle are totally recovered. Lessons concerning the use of the stationary phase method are drawn.Comment: 14 pages, 3 figure

    Metastable Random Field Ising model with exchange enhancement: a simple model for Exchange Bias

    Get PDF
    We present a simple model that allows hysteresis loops with exchange bias to be reproduced. The model is a modification of the T=0 random field Ising model driven by an external field and with synchronous local relaxation dynamics. The main novelty of the model is that a certain fraction f of the exchange constants between neighbouring spins is enhanced to a very large value J_E. The model allows the dependence of the exchange bias and other properties of the hysteresis loops to be analyzed as a function of the parameters of the model: the fraction f of enhanced bonds, the amount of the enhancement J_E and the amount of disorder which is controlled by the width sigma of the Gaussian distribution of the random fields.Comment: 8 pages, 11 figure

    Magnetic enhancement of Co0.2_{0.2}Zn0.8_{0.8}Fe2_2O4_4 spinel oxide by mechanical milling

    Full text link
    We report the magnetic properties of mechanically milled Co0.2_{0.2}Zn0.8_{0.8}Fe2_2O4_4 spinel oxide. After 24 hours milling of the bulk sample, the XRD spectra show nanostructure with average particle size \approx 20 nm. The as milled sample shows an enhancement in magnetization and ordering temperature compared to the bulk sample. If the as milled sample is annealed at different temperatures for the same duration, recrystallization process occurs and approaches to the bulk structure on increasing the annealing temperatures. The magnetization of the annealed samples first increases and then decreases. At higher annealing temperature (\sim 10000^{0}C) the system shows two coexisting magnetic phases {\it i.e.}, spin glass state and ferrimagnetic state, similar to the as prepared bulk sample. The room temperature M\"{o}ssbauer spectra of the as milled sample, annealed at 3000^{0}C for different durations (upto 575 hours), suggest that the observed change in magnetic behaviour is strongly related with cations redistribution between tetrahedral (A) and octahedral (O) sites in the spinel structure. Apart from the cation redistribution, we suggest that the enhancement of magnetization and ordering temperature is related with the reduction of B site spin canting and increase of strain induced anisotropic energy during mechanical milling.Comment: 14 pages LaTeX, 10 ps figure

    Multilocal programming and applications

    Get PDF
    Preprint versionMultilocal programming aims to identify all local minimizers of unconstrained or constrained nonlinear optimization problems. The multilocal programming theory relies on global optimization strategies combined with simple ideas that are inspired in deflection or stretching techniques to avoid convergence to the already detected local minimizers. The most used methods to solve this type of problems are based on stochastic procedures and a population of solutions. In general, population-based methods are computationally expensive but rather reliable in identifying all local solutions. In this chapter, a review on recent techniques for multilocal programming is presented. Some real-world multilocal programming problems based on chemical engineering process design applications are described.Fundação para a Ciência e a Tecnologia (FCT
    corecore