48 research outputs found

    Corrections to the apparent value of the cosmological constant due to local inhomogeneities

    Full text link
    Supernovae observations strongly support the presence of a cosmological constant, but its value, which we will call apparent, is normally determined assuming that the Universe can be accurately described by a homogeneous model. Even in the presence of a cosmological constant we cannot exclude nevertheless the presence of a small local inhomogeneity which could affect the apparent value of the cosmological constant. Neglecting the presence of the inhomogeneity can in fact introduce a systematic misinterpretation of cosmological data, leading to the distinction between an apparent and true value of the cosmological constant. We establish the theoretical framework to calculate the corrections to the apparent value of the cosmological constant by modeling the local inhomogeneity with a ΛLTB\Lambda LTB solution. Our assumption to be at the center of a spherically symmetric inhomogeneous matter distribution correspond to effectively calculate the monopole contribution of the large scale inhomogeneities surrounding us, which we expect to be the dominant one, because of other observations supporting a high level of isotropy of the Universe around us. By performing a local Taylor expansion we analyze the number of independent degrees of freedom which determine the local shape of the inhomogeneity, and consider the issue of central smoothness, showing how the same correction can correspond to different inhomogeneity profiles. Contrary to previous attempts to fit data using large void models our approach is quite general. The correction to the apparent value of the cosmological constant is in fact present for local inhomogeneities of any size, and should always be taken appropriately into account both theoretically and observationally.Comment: 16 pages,new sections added analyzing central smoothness and accuracy of the Taylor expansion approach, Accepted for publication by JCAP. An essay based on this paper received honorable mention in the 2011 Essay Context of the Gravity Research Foundatio

    The evolution of galaxy groups and of galaxies therein

    Full text link
    Properties of groups of galaxies depend sensitively on the algorithm for group selection, and even the most recent catalogs of groups built from redshift-space selection should suffer from projections and infalling galaxies. The cosmo-dynamical evolution of groups from initial Hubble expansion to collapse and virialization leads to a fundamental track (FT) in virial-theorem-M/L vs crossing time. The increased rates of mergers, both direct and after dynamical friction, in groups relative to clusters, explain the higher fraction of elliptical galaxies at given local number density in X-ray selected groups, relative to clusters, even when the hierarchical evolution of groups is considered. Galaxies falling into groups and clusters should later travel outwards to typically 2 virial radii, which is somewhat less than the outermost radius where observed galaxy star formation efficiencies are enhanced relative to field galaxies of same morphological type. An ongoing analysis of the internal kinematics of X-ray selected groups suggests that the radial profiles of line of sight velocity dispersion are consistent with isotropic NFW distributions for the total mass density, with higher (lower) concentrations than LambdaCDM predictions in groups of high (low) mass. The critical mass, at M200 ~ 10^13 M_sun is consistent with possible breaks in the X-ray luminosity-temperature and Fundamental Plane relations. The internal kinematics of groups indicate that the M-T relation of groups should agree with that extrapolated from clusters with no break at the group scale. The analyses of observed velocity dispersion profiles and of the FT both suggest that low velocity dispersion groups (compact and loose, X-ray emitting or undetected) are quite contaminated by chance projections.Comment: Invited review, ESO workshop "Groups of Galaxies in the Nearby Universe", held in Santiago, Chile, 5-9 December 2005, ed. I. Saviane, V. Ivanov & J. Borissova, 16 page

    International workshop on next generation gamma-ray source

    Get PDF
    A workshop on The Next Generation Gamma-Ray Source sponsored by the Office of Nuclear Physics at the Department of Energy, was held November 17-19, 2016 in Bethesda, Maryland. The goals of the workshop were to identify basic and applied research opportunities at the frontiers of nuclear physics that would be made possible by the beam capabilities of an advanced laser Compton beam facility. To anchor the scientific vision to realistically achievable beam specifications using proven technologies, the workshop brought together experts in the fields of electron accelerators, lasers, and optics to examine the technical options for achieving the beam specifications required by the most compelling parts of the proposed research programs. An international assembly of participants included current and prospective γ-ray beam users, accelerator and light-source physicists, and federal agency program managers. Sessions were organized to foster interactions between the beam users and facility developers, allowing for information sharing and mutual feedback between the two groups. The workshop findings and recommendations are summarized in this whitepaper

    International workshop on next generation gamma-ray source

    Get PDF
    A workshop on The Next Generation Gamma-Ray Source sponsored by the Office of Nuclear Physics at the Department of Energy, was held November 17-19, 2016 in Bethesda, Maryland. The goals of the workshop were to identify basic and applied research opportunities at the frontiers of nuclear physics that would be made possible by the beam capabilities of an advanced laser Compton beam facility. To anchor the scientific vision to realistically achievable beam specifications using proven technologies, the workshop brought together experts in the fields of electron accelerators, lasers, and optics to examine the technical options for achieving the beam specifications required by the most compelling parts of the proposed research programs. An international assembly of participants included current and prospective γ-ray beam users, accelerator and light-source physicists, and federal agency program managers. Sessions were organized to foster interactions between the beam users and facility developers, allowing for information sharing and mutual feedback between the two groups. The workshop findings and recommendations are summarized in this whitepaper

    Habilidades e avaliação de executivos

    Full text link

    Series evaluation of Tweedie exponential dispersion model densities

    Get PDF
    Exponential dispersion models, which are linear exponential families with a dispersion parameter, are the prototype response distributions for generalized linear models. The Tweedie family comprises those exponential dispersion models with power mean-variance relationships. The normal, Poisson, gamma and inverse Gaussian distributions belong to the Tweedie family. Apart from these special cases, Tweedie distributions do not have density functions which can be written in closed form. Instead, the densities can be represented as infinite summations derived from series expansions. This article describes how the series expansions can be summed in an numerically efficient fashion. The usefulness of the approach is demonstrated, but full machine accuracy is shown not to be obtainable using the series expansion method for all parameter values. Derivatives of the density with respect to the dispersion parameter are also derived to facilitate maximum likelihood estimation. The methods are demonstrated on two data examples and compared with with Box-Cox transformations and extended quasi-likelihoood

    Intracellular innate resistance to bacterial pathogens

    Full text link
    Mammalian innate immunity stimulates antigen-specific immune responses and acts to control infection prior to the onset of adaptive immunity. Some bacterial pathogens replicate within the host cell and are therefore sheltered from some protective aspects of innate immunity such as complement. Here we focus on mechanisms of innate intracellular resistance encountered by bacterial pathogens and how some bacteria can evade destruction by the innate immune system. Major strategies of intracellular antibacterial defence include pathogen compartmentalization and iron limitation. Compartmentalization of pathogens within the host endocytic pathway is critical for generating high local concentrations of antimicrobial molecules, such as reactive oxygen species, and regulating concentrations of divalent cations that are essential for microbial growth. Cytosolic sensing, autophagy, sequestration of essential nutrients and membrane attack by antimicrobial peptides are also discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71916/1/j.1462-5822.2006.00795.x.pd
    corecore