164 research outputs found

    Even-odd correlations in capacitance fluctuations of quantum dots

    Full text link
    We investigate effects of short range interactions on the addition spectra of quantum dots using a disordered Hubbard model. A correlation function \cS(q) is defined on the inverse compressibility versus filling data, and computed numerically for small lattices. Two regimes of interaction strength are identified: the even/odd fluctuations regime typical of Fermi liquid ground states, and a regime of structureless \cS(q) at strong interactions. We propose to understand the latter regime in terms of magnetically correlated localized spins.Comment: 3 pages, Revtex, Without figure

    Early-life environment and differences in costs of reproduction in a preindustrial human population

    Get PDF
    Reproduction is predicted to trade-off with long-term maternal survival, but the survival costs often vary between individuals, cohorts and populations, limiting our understanding of this trade-off, which is central to life-history theory. One potential factor generating variation in reproductive costs is variation in developmental conditions, but the role of early-life environment in modifying the reproduction-survival trade-off has rarely been investigated. We quantified the effect of early-life environment on the trade-off between female reproduction and survival in pre-industrial humans by analysing individual-based life-history data for >80 birth cohorts collected from Finnish church records, and between-year variation in local crop yields, annual spring temperature, and infant mortality as proxies of early-life environment. We predicted that women born during poor environmental conditions would show higher costs of reproduction in terms of survival compared to women born in better conditions. We found profound variation between the studied cohorts in the correlation between reproduction and longevity and in the early-life environment these cohorts were exposed to, but no evidence that differences in early-life environment or access to wealth affected the trade-off between reproduction and survival. Our results therefore do not support the hypothesis that differences in developmental conditions underlie the observed heterogeneity in reproduction-survival trade-off between individuals

    Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots

    Full text link
    We show that the parametric correlations of the conductance peak amplitudes of a chaotic or weakly disordered quantum dot in the Coulomb blockade regime become universal upon an appropriate scaling of the parameter. We compute the universal forms of this correlator for both cases of conserved and broken time reversal symmetry. For a symmetric dot the correlator is independent of the details in each lead such as the number of channels and their correlation. We derive a new scaling, which we call the rotation scaling, that can be computed directly from the dot's eigenfunction rotation rate or alternatively from the conductance peak heights, and therefore does not require knowledge of the spectrum of the dot. The relation of the rotation scaling to the level velocity scaling is discussed. The exact analytic form of the conductance peak correlator is derived at short distances. We also calculate the universal distributions of the average level width velocity for various values of the scaled parameter. The universality is illustrated in an Anderson model of a disordered dot.Comment: 35 pages, RevTex, 6 Postscript figure

    Magnetotunneling spectroscopy of mesoscopic correlations in two-dimensional electron systems

    Full text link
    An approach to experimentally exploring electronic correlation functions in mesoscopic regimes is proposed. The idea is to monitor the mesoscopic fluctuations of a tunneling current flowing between the two layers of a semiconductor double-quantum-well structure. From the dependence of these fluctuations on external parameters, such as in-plane or perpendicular magnetic fields, external bias voltages, etc., the temporal and spatial dependence of various prominent correlation functions of mesoscopic physics can be determined. Due to the absence of spatially localized external probes, the method provides a way to explore the interplay of interaction and localization effects in two-dimensional systems within a relatively unperturbed environment. We describe the theoretical background of the approach and quantitatively discuss the behavior of the current fluctuations in diffusive and ergodic regimes. The influence of both various interaction mechanisms and localization effects on the current is discussed. Finally a proposal is made on how, at least in principle, the method may be used to experimentally determine the relevant critical exponents of localization-delocalization transitions.Comment: 15 pages, 3 figures include

    "Level Curvature" Distribution for Diffusive Aharonov-Bohm Systems: analytical results

    Full text link
    We calculate analytically the distributions of "level curvatures" (LC) (the second derivatives of eigenvalues with respect to a magnetic flux) for a particle moving in a white-noise random potential. We find that the Zakrzewski-Delande conjecture is still valid even if the lowest weak localization corrections are taken into account. The ratio of mean level curvature modulus to mean dissipative conductance is proved to be universal and equal to 2π2\pi in agreement with available numerical data.Comment: 12 pages. Submitted to Phys.Rev.

    Energy level dynamics in systems with weakly multifractal eigenstates: equivalence to 1D correlated fermions

    Full text link
    It is shown that the parametric spectral statistics in the critical random matrix ensemble with multifractal eigenvector statistics are identical to the statistics of correlated 1D fermions at finite temperatures. For weak multifractality the effective temperature of fictitious 1D fermions is proportional to (1-d_{n})/n, where d_{n} is the fractal dimension found from the n-th moment of inverse participation ratio. For large energy and parameter separations the fictitious fermions are described by the Luttinger liquid model which follows from the Calogero-Sutherland model. The low-temperature asymptotic form of the two-point equal-parameter spectral correlation function is found for all energy separations and its relevance for the low temperature equal-time density correlations in the Calogero-Sutherland model is conjectured.Comment: 4 pages, Revtex, final journal versio

    Statistics of pre-localized states in disordered conductors

    Get PDF
    The distribution function of local amplitudes of single-particle states in disordered conductors is calculated on the basis of the supersymmetric σ\sigma-model approach using a saddle-point solution of its reduced version. Although the distribution of relatively small amplitudes can be approximated by the universal Porter-Thomas formulae known from the random matrix theory, the statistics of large amplitudes is strongly modified by localization effects. In particular, we find a multifractal behavior of eigenstates in 2D conductors which follows from the non-integer power-law scaling for the inverse participation numbers (IPN) with the size of the system. This result is valid for all fundamental symmetry classes (unitary, orthogonal and symplectic). The multifractality is due to the existence of pre-localized states which are characterized by power-law envelopes of wave functions, ψt(r)2r2μ|\psi_t(r)|^2\propto r^{-2\mu}, μ<1\mu <1. The pre-localized states in short quasi-1D wires have the power-law tails ψ(x)2x2|\psi (x)|^2\propto x^{-2}, too, although their IPN's indicate no fractal behavior. The distribution function of the largest-amplitude fluctuations of wave functions in 2D and 3D conductors has logarithmically-normal asymptotics.Comment: RevTex, 17 twocolumn pages; revised version (several misprint corrected

    Which Kubo formula gives the exact conductance of a mesoscopic disordered system?

    Full text link
    In both research and textbook literature one often finds two ``different'' Kubo formulas for the zero-temperature conductance of a non-interacting Fermi system. They contain a trace of the product of velocity operators and single-particle (retarded and advanced) Green operators: Tr(v^xG^rv^xG^a)\text{Tr} (\hat{v}_x \hat{G}^r \hat{v}_x \hat{G}^a) or Tr(v^xImG^v^xImG^)\text{Tr} (\hat{v}_x \text{Im} \hat{G} \hat{v}_x \text{Im} \hat{G}). The study investigates the relationship between these expressions, as well as the requirements of current conservation, through exact evaluation of such quantum-mechanical traces for a nanoscale (containing 1000 atoms) mesoscopic disordered conductor. The traces are computed in the semiclassical regime (where disorder is weak) and, more importantly, in the nonperturbative transport regime (including the region around localization-delocalization transition) where concept of mean free path ceases to exist. Since quantum interference effects for such strong disorder are not amenable to diagrammatic or nonlinear σ\sigma-model techniques, the evolution of different Green function terms with disorder strength provides novel insight into the development of an Anderson localized phase.Comment: 7 pages, 5 embedded EPS figures, final published version (note: PRB article has different title due to editorial censorship

    Elastic deformation of a fluid membrane upon colloid binding

    Full text link
    When a colloidal particle adheres to a fluid membrane, it induces elastic deformations in the membrane which oppose its own binding. The structural and energetic aspects of this balance are theoretically studied within the framework of a Helfrich Hamiltonian. Based on the full nonlinear shape equations for the membrane profile, a line of continuous binding transitions and a second line of discontinuous envelopment transitions are found, which meet at an unusual triple point. The regime of low tension is studied analytically using a small gradient expansion, while in the limit of large tension scaling arguments are derived which quantify the asymptotic behavior of phase boundary, degree of wrapping, and energy barrier. The maturation of animal viruses by budding is discussed as a biological example of such colloid-membrane interaction events.Comment: 14 pages, 9 figures, REVTeX style, follow-up on cond-mat/021242

    Alternative Technique for "Complex" Spectra Analysis

    Full text link
    . The choice of a suitable random matrix model of a complex system is very sensitive to the nature of its complexity. The statistical spectral analysis of various complex systems requires, therefore, a thorough probing of a wide range of random matrix ensembles which is not an easy task. It is highly desirable, if possible, to identify a common mathematcal structure among all the ensembles and analyze it to gain information about the ensemble- properties. Our successful search in this direction leads to Calogero Hamiltonian, a one-dimensional quantum hamiltonian with inverse-square interaction, as the common base. This is because both, the eigenvalues of the ensembles, and, a general state of Calogero Hamiltonian, evolve in an analogous way for arbitrary initial conditions. The varying nature of the complexity is reflected in the different form of the evolution parameter in each case. A complete investigation of Calogero Hamiltonian can then help us in the spectral analysis of complex systems.Comment: 20 pages, No figures, Revised Version (Minor Changes
    corecore