143 research outputs found

    1D model for the dynamics and expansion of elongated Bose-Einstein condensates

    Full text link
    We present a 1D effective model for the evolution of a cigar-shaped Bose-Einstein condensate in time dependent potentials whose radial component is harmonic. We apply this model to investigate the dynamics and expansion of condensates in 1D optical lattices, by comparing our predictions with recent experimental data and theoretical results. We also discuss negative-mass effects which could be probed during the expansion of a condensate moving in an optical lattice.Comment: RevTeX4, 8 pages, 10 figures, extended and revised versio

    Sensitive detection of HO 2 radicals produced in an atmospheric pressure plasma using Faraday rotation cavity ring-down spectroscopy

    Get PDF
    Cavity ring-down spectroscopy (CRDS) is a well-established, highly sensitive absorption technique whose sensitivity and selectivity for trace radical sensing can be further enhanced by measuring the polarization rotation of the intracavity light by the paramagnetic samples in the presence of a magnetic field. In this paper, we highlight the use of this Faraday rotation cavity ring-down spectroscopy (FR-CRDS) for the detection of HO2 radicals. In particular, we use a cold atmospheric pressure plasma jet as a highly efficient source of HO2 radicals and show that FR-CRDS in the near-infrared spectral region (1506 nm) has the potential to be a useful tool for studying radical chemistry. By simultaneously measuring ring-down times of orthogonal linearly polarized light, measurements of Faraday effect-induced rotation angles (θ) and absorption coefficients (α) are retrieved from the same data set. The Faraday rotation measurement exhibits better long-term stability and enhanced sensitivity due to its differential nature, whereby highly correlated noise between the two channels and slow drifts cancel out. The bandwidth-normalized sensitivities are αmin=2.2×10-11 cm-1 Hz-1/2 and θmin=0.62 nrad Hz-1/2. The latter corresponds to a minimum detectable (circular) birefringence of Δnmin=5×10-16 Hz-1/2. Using the overlapping qQ3(N = 4-9) transitions of HO2, we estimate limits of detection of 3.1 × 108 cm-3 based on traditional (absorption) CRDS methods and 6.7 × 107 cm-3 using FR-CRDS detection, where each point of the spectrum was acquired during 2 s. In addition, Verdet constants for pertinent carrier (He, Ar) and bulk (N2, O2) gases were recorded in this spectral region for the first time. These show good agreement with recent measurements of air and values extrapolated from reported Verdet constants at shorter wavelengths, demonstrating the potential of FR-CRDS for measurements of very weak Faraday effects and providing a quantitative validation to the computed rotation angles

    Photoactive TiO2-montmorillonite composite for degradation of organic dyes in water

    Get PDF
    TiO2\u2013montmorillonite composite (TiO2\u2013M) was prepared by impregnation with TiCl4 followed by calcination at 350 C. The synthesized material was characterized by FTIR, TG\u2013DTA, BET, XRD and SEM\u2013 EDX. The results show that TiO2 was efficiently formed in Na\u2013montmorillonite (Na\u2013M) framework, and only a crystalline, pure anatase phase was produced. Photoactivity tests were carried out under UV-A irradiation using five selected organic dyes. The results indicate that the activity of TiO2\u2013M is more important for cationic dyes, where the removal rates are in the order: crystal violet (97.1%) > methylene blue (93.20%) > rhodamine B (79.8%) > methyl orange (36.1%) > Congo red (22.6%). The results of the TiO2\u2013 M activity were compared with that of the commercial P25. The comparison demonstrates that the synthesized TiO2\u2013M exhibits a higher adsorptive behavior and can be used as low-cost alternative to the commercial TiO2 for wastewater treatment, showing also an extreme easiness to completely recover the composite catalyst at the end of the test

    Constraining the expansion rate of the Universe using low-redshift ellipticals as cosmic chronometers

    Full text link
    We present a new methodology to determine the expansion history of the Universe analyzing the spectral properties of early type galaxies (ETG). We found that for these galaxies the 4000\AA break is a spectral feature that correlates with the relative ages of ETGs. In this paper we describe the method, explore its robustness using theoretical synthetic stellar population models, and apply it using a SDSS sample of ∼\sim14 000 ETGs. Our motivation to look for a new technique has been to minimise the dependence of the cosmic chronometer method on systematic errors. In particular, as a test of our method, we derive the value of the Hubble constant H0=72.6±2.8H_0 = 72.6 \pm 2.8 (stat) ±2.3\pm2.3 (syst) (68% confidence), which is not only fully compatible with the value derived from the Hubble key project, but also with a comparable error budget. Using the SDSS, we also derive, assuming w=constant, a value for the dark energy equation of state parameter w=−1±0.2w = -1 \pm 0.2 (stat) ±0.3\pm0.3 (syst). Given the fact that the SDSS ETG sample only reaches z∼0.3z \sim 0.3, this result shows the potential of the method. In future papers we will present results using the high-redshift universe, to yield a determination of H(z) up to z∼1z \sim 1.Comment: 25 pages, 17 figures, JCAP accepte

    Dark Matter Sees The Light

    Full text link
    We construct a Dark Matter (DM) annihilation module that can encompass the predictions from a wide array of models built to explain the recently reported PAMELA and ATIC/PPB-BETS excesses. We present a detailed analysis of the injection spectrums for DM annihilation and quantitatively demonstrate effects that have previously not been included from the particle physics perspective. With this module we demonstrate the parameter space that can account for the aforementioned excesses and be compatible with existing high energy gamma ray and neutrino experiments. However, we find that it is relatively generic to have some tension between the results of the HESS experiment and the ATIC/PPB-BETS experiments within the context of annihilating DM. We discuss ways to alleviate this tension and how upcoming experiments will be able to differentiate amongst the various possible explanations of the purported excesses.Comment: 47 pages, 17 figure

    GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium

    Get PDF
    Decline in muscle strength with aging is an important predictor of health trajectory in the elderly. Several factors, including genetics, are proposed contributors to variability in muscle strength. To identify genetic contributors to muscle strength, a meta-analysis of genomewide association studies of handgrip was conducted. Grip strength was measured using a handheld dynamometer in 27 581 individuals of European descent over 65 years of age from 14 cohort studies. Genomewide association analysis was conducted on ~2.7 million imputed and genotyped variants (SNPs). Replication of the most significant findings was conducted using data from 6393 individuals from three cohorts. GWAS of lower body strength was also characterized in a subset of cohorts. Two genomewide significant (P-value< 5 × 10−8) and 39 suggestive (P-value< 5 × 10−5) associations were observed from meta-analysis of the discovery cohorts. After meta-analysis with replication cohorts, genomewide significant association was observed for rs752045 on chromosome 8 (β = 0.47, SE = 0.08, P-value = 5.20 × 10−10). This SNP is mapped to an intergenic region and is located within an accessible chromatin region (DNase hypersensitivity site) in skeletal muscle myotubes differentiated from the human skeletal muscle myoblasts cell line. This locus alters a binding motif of the CCAAT/enhancer-binding protein-β (CEBPB) that is implicated in muscle repair mechanisms. GWAS of lower body strength did not yield significant results. A common genetic variant in a chromosomal region that regulates myotube differentiation and muscle repair may contribute to variability in grip strength in the elderly. Further studies are needed to uncover the mechanisms that link this genetic variant with muscle strength

    Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

    Get PDF
    Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan

    The Polygenic and Monogenic Basis of Blood Traits and Diseases

    Get PDF
    Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation. Analysis of blood cell traits in the UK Biobank and other cohorts illuminates the full genetic architecture of hematopoietic phenotypes, with evidence supporting the omnigenic model for complex traits and linking polygenic burden with monogenic blood diseases
    • …
    corecore