104 research outputs found

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Extension, poverty and vulnerability Inception report of a study for the Neuchatel Initiative

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:9349.834(144) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    High Field Terahertz Time-Domain Spectroscopy of Lactose Monohydrate

    No full text
    High field terahertz spectroscopy measurements of lactose monohydrate are presented. It is found that the feature at 0.53 THz, relating to the translatory motion of the lactose molecules along the long axis of the unit cell, becomes saturated with an incident THz field strength of 26 kV/cm for a pure powdered lactose sample. We also obtain an estimate of the feature at 1.37 THz to become saturated with a THz field strength of 205 kV/cm. This nonlinear saturation indicates the potential of dynamically distorting the crystal structure at sufficiently high fields

    2D Time-Domain Spectroscopy for Determination of Energy and Momentum Relaxation Rates of Hydrogen-Like Donor States in Germanium

    No full text
    We present measurements of the coherence times of excited states of hydrogen-like arsenic impurities in germanium (Ge:As) using a table-top two-dimensional time-domain spectroscopy (2D-TDS) system. We show that this laboratory system is capable of resolving the coherence lifetimes of atomic-like excited levels of impurity centers in semiconductors, such as those used in solid-state quantum information technologies, on a subpicosecond time scale. By fitting the coherent nonlinear response of the system with the known intracenter transition frequencies, we are able to monitor coherent population transfer and decay of the transitions from the 2p0 and 2p± states for different low excitation pulse fields. Furthermore, by examining the off-diagonal resonances in the 2D frequency-domain map, we are able to identify coherences between excited electronic states that are not visible via conventional single-frequency pump-probe or Hahn-echo measurements
    corecore