1,234 research outputs found

    On the Connectedness of the Moduli Space of Calabi--Yau Manifolds

    Full text link
    We show that the moduli space of all Calabi-Yau manifolds that can be realized as hypersurfaces described by a transverse polynomial in a four dimensional weighted projective space, is connected. This is achieved by exploiting techniques of toric geometry and the construction of Batyrev that relate Calabi-Yau manifolds to reflexive polyhedra. Taken together with the previously known fact that the moduli space of all CICY's is connected, and is moreover connected to the moduli space of the present class of Calabi-Yau manifolds (since the quintic threefold P_4[5] is both CICY and a hypersurface in a weighted P_4, this strongly suggests that the moduli space of all simply connected Calabi-Yau manifolds is connected. It is of interest that singular Calabi-Yau manifolds corresponding to the points in which the moduli spaces meet are often, for the present class, more singular than the conifolds that connect the moduli spaces of CICY's.Comment: 22 pages plain TeX, Tables and references adde

    The web of Calabi-Yau hypersurfaces in toric varieties

    Get PDF
    Recent results on duality between string theories and connectedness of their moduli spaces seem to go a long way toward establishing the uniqueness of an underlying theory. For the large class of Calabi-Yau 3-folds that can be embedded as hypersurfaces in toric varieties the proof of mathematical connectedness via singular limits is greatly simplified by using polytopes that are maximal with respect to certain single or multiple weight systems. We identify the multiple weight systems occurring in this approach. We show that all of the corresponding Calabi-Yau manifolds are connected among themselves and to the web of CICY's. This almost completes the proof of connectedness for toric Calabi-Yau hypersurfaces.Comment: TeX, epsf.tex; 24 page

    A systematic review of physical activity promotion strategies

    Get PDF
    This article was first published in:British Journal of Sports Medicine:1996:30:84-89We have reviewed randomised controlled trials of physical activity promotion to provide recent and reliable information on the effectiveness of physical activity promotion. Computerised databases and references of references were searched. Experts were contacted and asked for information about existing work. Studies assessed were randomised controlled trials of healthy, free living, adult subjects, where exercise behaviour was the dependent variable. Eleven trials were identified. No United Kingdom based studies were found. Interventions that encourage walking and do not require attendance at a facility are most likely to lead to sustainable increases in overall physical activity. Brisk walking has the greatest potential for increasing overall activity levels of a sedentary population and meeting current public health recommendations. The small number of trials limits the strength of any conclusions and highlights the need for more research

    Nonclassical statistics of intracavity coupled χ(2)\chi^{(2)} waveguides: the quantum optical dimer

    Get PDF
    A model is proposed where two χ(2)\chi^{(2)} nonlinear waveguides are contained in a cavity suited for second-harmonic generation. The evanescent wave coupling between the waveguides is considered as weak, and the interplay between this coupling and the nonlinear interaction within the waveguides gives rise to quantum violations of the classical limit. These violations are particularly strong when two instabilities are competing, where twin-beam behavior is found as almost complete noise suppression in the difference of the fundamental intensities. Moreover, close to bistable transitions perfect twin-beam correlations are seen in the sum of the fundamental intensities, and also the self-pulsing instability as well as the transition from symmetric to asymmetric states display nonclassical twin-beam correlations of both fundamental and second-harmonic intensities. The results are based on the full quantum Langevin equations derived from the Hamiltonian and including cavity damping effects. The intensity correlations of the output fields are calculated semi-analytically using a linearized version of the Langevin equations derived through the positive-P representation. Confirmation of the analytical results are obtained by numerical simulations of the nonlinear Langevin equations derived using the truncated Wigner representation.Comment: 15 pages, 8 figures, submitted to Phys. Rev.

    Dark Matter Direct Detection Signals inferred from a Cosmological N-body Simulation with Baryons

    Full text link
    We extract at redshift z=0 a Milky Way sized object including gas, stars and dark matter (DM) from a recent, high-resolution cosmological N-body simulation with baryons. Its resolution is sufficient to witness the formation of a rotating disk and bulge at the center of the halo potential. The phase-space structure of the central galactic halo reveals the presence of a dark disk component, that is co-rotating with the stellar disk. At the Earth's location, it contributes to around 25% of the total DM local density, whose value is rho_DM ~ 0.37 GeV/cm^3. The velocity distributions also show strong deviations from pure Gaussian and Maxwellian distributions, with a sharper drop of the high velocity tail. We give a detailed study of the impact of these features on the predictions for DM signals in direct detection experiments. In particular, the question of whether the modulation signal observed by DAMA is or is not excluded by limits set by other experiments (CDMS, XENON and CRESST...) is re-analyzed and compared to the case of a standard Maxwellian halo, in both the elastic and the inelastic scattering scenarios. We find that the compatibility between DAMA and the other experiments is improved. In the elastic scenario, the DAMA modulation signal is slightly enhanced in the so-called channeling region, as a result of several effects. For the inelastic scenario, the improvement of the fit is mainly attributable to the departure from a Maxwellian distribution at high velocity.Comment: 39 page

    Building the cosmic distance scale: from Hipparcos to Gaia

    Get PDF
    Hipparcos, the first ever experiment of global astrometry, was launched by ESA in 1989 and its results published in 1997 (Perryman et al., Astron. Astrophys. 323, L49, 1997; Perryman & ESA (eds), The Hipparcos and Tycho catalogues, ESA SP-1200, 1997). A new reduction was later performed using an improved satellite attitude reconstruction leading to an improved accuracy for stars brighter than 9th magnitude (van Leeuwen & Fantino, Astron. Astrophys. 439, 791, 2005; van Leeuwen, Astron. Astrophys. 474, 653, 2007). The Hipparcos Catalogue provided an extended dataset of very accurate astrometric data (positions, trigonometric parallaxes and proper motions), enlarging by two orders of magnitude the quantity and quality of distance determinations and luminosity calibrations. The availability of more than 20000 stars with a trigonometric parallax known to better than 10% opened the way to a drastic revision of our 3-D knowledge of the solar neighbourhood and to a renewal of the calibration of many distance indicators and age estimations. The prospects opened by Gaia, the next ESA cornerstone, planned for launch in June 2013 (Perryman et al., Astron. Astrophys. 369, 339, 2001), are still much more dramatic: a billion objects with systematic and quasi simultaneous astrometric, spectrophotometric and spectroscopic observations, about 150 million stars with expected distances to better than 10%, all over the Galaxy. All stellar distance indicators, in very large numbers, will be directly measured, providing a direct calibration of their luminosity and making possible detailed studies of the impacts of various effects linked to chemical element abundances, age or cluster membership. With the help of simulations of the data expected from Gaia, obtained from the mission simulator developed by DPAC, we will illustrate what Gaia can provide with some selected examples.Comment: 16 pages, 16 figures, Conference "The Fundamental Cosmic Distance scale: State of the Art and the Gaia perspective, 3-6 May 2011, INAF, Osservatorio Astronomico di Capodimonte, Naples. Accepted for publication in Astrophysics & Space Scienc

    Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets

    Full text link
    The spins of ten stellar black holes have been measured using the continuum-fitting method. These black holes are located in two distinct classes of X-ray binary systems, one that is persistently X-ray bright and another that is transient. Both the persistent and transient black holes remain for long periods in a state where their spectra are dominated by a thermal accretion disk component. The spin of a black hole of known mass and distance can be measured by fitting this thermal continuum spectrum to the thin-disk model of Novikov and Thorne; the key fit parameter is the radius of the inner edge of the black hole's accretion disk. Strong observational and theoretical evidence links the inner-disk radius to the radius of the innermost stable circular orbit, which is trivially related to the dimensionless spin parameter a_* of the black hole (|a_*| < 1). The ten spins that have so far been measured by this continuum-fitting method range widely from a_* \approx 0 to a_* > 0.95. The robustness of the method is demonstrated by the dozens or hundreds of independent and consistent measurements of spin that have been obtained for several black holes, and through careful consideration of many sources of systematic error. Among the results discussed is a dichotomy between the transient and persistent black holes; the latter have higher spins and larger masses. Also discussed is recently discovered evidence in the transient sources for a correlation between the power of ballistic jets and black hole spin.Comment: 30 pages. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher). Changes to Sections 5.2, 6.1 and 7.4. Section 7.4 responds to Russell et al. 2013 (MNRAS, 431, 405) who find no evidence for a correlation between the power of ballistic jets and black hole spi

    Neutron structure function and inclusive DIS from H-3 and He-3 at large Bjorken-x

    Get PDF
    A detailed study of inclusive deep inelastic scattering (DIS) from mirror A = 3 nuclei at large values of the Bjorken variable x is presented. The main purpose is to estimate the theoretical uncertainties on the extraction of the neutron DIS structure function from such nuclear measurements. On one hand, within models in which no modification of the bound nucleon structure functions is taken into account, we have investigated the possible uncertainties arising from: i) charge symmetry breaking terms in the nucleon-nucleon interaction, ii) finite Q**2 effects neglected in the Bjorken limit, iii) the role of different prescriptions for the nucleon Spectral Function normalization providing baryon number conservation, and iv) the differences between the virtual nucleon and light cone formalisms. Although these effects have been not yet considered in existing analyses, our conclusion is that all these effects cancel at the level of ~ 1% for x < 0.75 in overall agreement with previous findings. On the other hand we have considered several models in which the modification of the bound nucleon structure functions is accounted for to describe the EMC effect in DIS scattering from nuclei. It turns out that within these models the cancellation of nuclear effects is expected to occur only at a level of ~ 3%, leading to an accuracy of ~ 12 % in the extraction of the neutron to proton structure function ratio at x ~ 0.7 -0.8$. Another consequence of considering a broad range of models of the EMC effect is that the previously suggested iteration procedure does not improve the accuracy of the extraction of the neutron to proton structure function ratio.Comment: revised version to appear in Phys. Rev. C; main modifications in Section 4; no change in the conclusion
    • …
    corecore