14 research outputs found

    High-temperature Hydrogen Chloride Releases from Mixtures of Sodium Chloride with Sulfates: Implications for the Chlorine-Mineralogy as Determined by the Sample Analysis at Mars Instrument on the Curiosity Rover in Gale Crater, Mars

    Get PDF
    Hydrogen chloride releases above 500 C occurred in several samples analyzed by the Sample Analysis at Mars (SAM) evolved gas analyzer on the Curiosity rover in Gale crater. These have been attributed to reactions between chlorides (original or from oxychlorine decomposition) and water. Some of these HCl releases that peaked below the melting temperature of common chlorides did not co-evolve with oxygen or water, and were not explained by laboratory analog work (Figure 1). Therefore, these HCl releases were not caused by MgCl2 or soley due to reactions between water and melting chlorides. The goal of this work was to explain the HCl releases that did not co-evolve with oxygen or water and occurred below the melting point of common chlorides, which have not been explained by previous laboratory analog work. This work specifically evaluates the role of evolved SO2 in the production of HCl

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link

    Detection of Reduced Sulfur on Vera Rubin Ridge by Quadratic Discriminant Analysis of Volatiles Observed During Evolved Gas Analysis

    No full text
    The Mars Science Laboratory mission investigated Vera Rubin ridge, which bears spectral indications of elevated amounts of hematite and has been hypothesized as having a complex diagenetic history. Martian samples, including three drilled samples from the ridge, were analyzed by the Sample Analysis at Mars instrument suite via evolved gas analysis-mass spectrometry (EGA-MS). Here, we report new EGA-MS data from Martian samples and describe laboratory analogue experiments. Analyses of laboratory analogues help determine the presence of reduced sulfur in Martian solid samples, which could have supported potential microbial life. We used evolved carbonyl sulfide (COS) and carbon disulfide (CS) to identify Martian samples likely to contain reduced sulfur by applying a quadratic discriminant analysis. While we report results for 24 Martian samples, we focus on Vera Rubin ridge samples and select others for comparison. Our results suggest the presence of reduced sulfur in the Jura member of Vera Rubin ridge, which can support various diagenetic history models, including, as discussed in this work, diagenetic alteration initiated by a mildly reducing, sulfite-containing groundwater.With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737

    Isotopic and geochemical investigation of two distinct Mars analog environments using evolved gas techniques in Svalbard, Norway

    No full text
    The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using methodologies and techniques to be deployed on Mars Science Laboratory (MSL). AMASE-related research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite on MSL includes pyrolysis ovens, a gas-processing manifold, a quadrupole mass spectrometer (QMS), several gas chromatography columns, and a Tunable Laser Spectrometer (TLS). An integral part of SAM development is the deployment of SAM-like instrumentation in the field. During AMASE 2010, two parts of SAM participated as stand-alone instruments. A Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-QMS) system represented the EGA-QMS component of SAM, and a Picarro Cavity Ring Down Spectrometer (EGA-CRDS), represented the EGA-TLS component of SAM. A field analog of CheMin, the XRD/XRF on MSL, was also deployed as part of this field campaign. Carbon isotopic measurements of CO2 evolved during thermal decomposition of carbonates were used together with EGA-QMS geochemical data, mineral composition information and contextual observations made during sample collection to distinguish carbonates formation associated with chemosynthetic activity at a fossil methane seep from abiotic processes forming carbonates associated with subglacial basaltic eruptions. Carbon and oxygen isotopes of the basalt-hosted carbonates suggest cryogenic carbonate formation, though more research is necessary to clarify the history of these rocks

    Isotopic and geochemical investigation of two distinct Mars analog environments using evolved gas techniques in Svalbard, Norway

    No full text
    The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using methodologies and techniques to be deployed on Mars Science Laboratory (MSL). AMASE-related research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite on MSL includes pyrolysis ovens, a gas-processing manifold, a quadrupole mass spectrometer (QMS), several gas chromatography columns, and a Tunable Laser Spectrometer (TLS). An integral part of SAM development is the deployment of SAM-like instrumentation in the field. During AMASE 2010, two parts of SAM participated as stand-alone instruments. A Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-QMS) system represented the EGA-QMS component of SAM, and a Picarro Cavity Ring Down Spectrometer (EGA-CRDS), represented the EGA-TLS component of SAM. A field analog of CheMin, the XRD/XRF on MSL, was also deployed as part of this field campaign. Carbon isotopic measurements of CO2 evolved during thermal decomposition of carbonates were used together with EGA-QMS geochemical data, mineral composition information and contextual observations made during sample collection to distinguish carbonates formation associated with chemosynthetic activity at a fossil methane seep from abiotic processes forming carbonates associated with subglacial basaltic eruptions. Carbon and oxygen isotopes of the basalt-hosted carbonates suggest cryogenic carbonate formation, though more research is necessary to clarify the history of these rocks

    Spectroscopic comparisons of two different terrestrial basaltic environments: Exploring the correlation between nitrogen compounds and biomolecular signatures

    No full text
    International audienceLife detection in the solar system relies on the unambiguous identification of signatures of life and habitability. Organic molecules are essential to life as we know it, and yet many organic compounds are ubiquitous in the solar system and can be synthesized abiotically; thus, their presence alone is not indicative of life. On Earth, chemical signatures of life's processes are often left behind in minerals through the biologically induced formation of secondary minerals or intermediary organic complexes. In natural rocks biomolecules and organic species often co-occur with minerals, and their overlapping peaks can create difficulties in interpretation. In the process of identifying the minerals and organic species in our basaltic samples we noticed signatures for cyanates co-occurring with organic molecules. Cyanates are an overlooked group of nitrogen compounds in which C is bonded to N (e.g., OCN− or SCN−) that often co-occur with urea and ammonium in environments where microorganisms are present. These compounds are common in many terrestrial and oceanic environments and play an important role in biogeochemical nitrogen cycling. In natural systems, these compounds form as the result of multiple biogeochemical pathways, often from the interaction of microbes with a chemically active environment. These interactions leave behind signatures in the form biotic breakdown products such as urea or ammonium and organic reaction byproducts that are observable with spectroscopic methods. To explore these relationships, we used field-portable Raman spectrometers and laboratory micro-Raman imaging to characterize and compare samples collected from two different terrestrial basaltic environments, a lava tube on Mauna Loa, Hawaii, dominated by the precipitation of sulfate minerals and a geothermal stream at Hveragil, Iceland dominated by the precipitation of carbonate minerals. The Raman (RS) measurements were complemented by laser induced breakdown spectroscopy (LIBS), Long-wave Infrared (IR) LIBS, with the addition of gas chromatograph mass spectrometry (GC–MS) and inductively coupled plasma-mass spectrometry (ICP-MS) to identify cyanate compounds, biomolecules, and other nitrogenous compounds related to the breakdown or production of cyanate in host basalts and secondary precipitates. The RS data suggest that the reason for RS cyanate signatures in the carbonate samples could be due to luminescence artifacts while those detected in the host basalts may be due to hydrolysis chemistry. The cyanate signatures detected in the lava tube samples dominated by sulfates do not seem to be luminescence artifacts but may in fact be evidence of an active microbial nitrogen cycle. Our results inform the spectroscopic detection of cyanates in planetary analog environments and the challenges in their identification. Further work is needed to understand their potential as biosignatures on other planetary bodies

    Constraining Alteration Processes Along the Siccar Point Group Unconformity, Gale Crater, Mars: Results from the Sample Analysis at Mars Instrument

    Get PDF
    International audienceResults from the Sample Analysis at Mars (SAM)-evolved gas analyzer (EGA) on board the Mars Science Laboratory Curiosity rover constrained the alteration history and habitability potential of rocks sampled across the Siccar Point unconformity in Gale crater.The Glasgow member (Gm) mudstone just below the unconformity had evidence of acid sulfate or Si-poor brine alteration of Fe-smectite to Fe amorphous phases, leaching loss of Fe-Mg-sulfate and exchange of unfractionated sulfur 34S (δ34S=2±7‰) with enriched 34S (20±5‰, V-CDT). Carbon abundances did not significantly change (322-661 μgC/g) consistent with carbon stabilization by amorphous Al- and Fe-hydroxide phases. The Gm mudstone had no detectable oxychlorine and extremely low nitrate. Nitrate (0.06 wt.% NO3), oxychlorine (0.13 wt% ClO4), high C (1472 μg C/g), and low Fe/Mg-sulfate concentration (0.24 wt.% SO3) depleted in 34S (δ34S = -27‰ ± 7), were detected in the Stimson formation (Sf) eolian sandstone above the unconformity. Redox disequilibrium through the detections of iron sulfide and sulfate supported limited aqueous processes in the Sf sandstone. Si-poor brines or acidic fluids altered the Gm mudstone just below the unconformity but did not alter underlying Gm mudstones further from the contact. Chemical differences between the Sf and Gm rocks suggested that fluid interaction was minimal between the Sf and Gm rocks. These results suggested that the Gm rocks were altered by subsurface fluids after the Sf placement. Aqueous processes along the unconformity could have provided habitable conditions and in some cases, C and N levels could have supported heterotrophic microbial populations

    The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars

    No full text
    The deuterium to hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient martian clays retains the imprint of the water of formation of these minerals. Curiosity’s Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550°C and 950°C from samples of Hesperian era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (±0.2) times the ratio in Standard Mean Ocean Water (SMOW). The D/H ratio in this ~3 billion year old mudstone that is half that of the present martian atmosphere but substantially higher than that expected in very early Mars indicates an extended history of hydrogen escape and desiccation of the planet
    corecore