38 research outputs found
Microencapsulation of Paraffin Wax in Melamine-Formaldehyde for use in Thermal Management Study
Melamine formaldehyde microcapsules containing paraffin wax as phase change material (PCM) were synthesized. Free space was generated in-situ inside microcapsules. These were characterized by FTIR Spectrophotometer, Scanning electron microscope (SEM), Differential Scanning colorimeter (DSC), and optical microscope. It was confirmed that PCM was successfully encapsulated inside the shell material. Encapsulated PCM showed good phase change properties during heating and cooling. Enthalpy value of about 100 J/g was observed. The shape of the microcapsule, showing rough morphology is expected to help during processing and crystallization. It has been experimentally confirmed that no leakage occurs during the melting of PCM. Effectiveness in temperature control in a hot environment was also found to be satisfactory
Phoretic Motion of Spheroidal Particles Due To Self-Generated Solute Gradients
We study theoretically the phoretic motion of a spheroidal particle, which
generates solute gradients in the surrounding unbounded solvent via chemical
reactions active on its surface in a cap-like region centered at one of the
poles of the particle. We derive, within the constraints of the mapping to
classical diffusio-phoresis, an analytical expression for the phoretic velocity
of such an object. This allows us to analyze in detail the dependence of the
velocity on the aspect ratio of the polar and the equatorial diameters of the
particle and on the fraction of the particle surface contributing to the
chemical reaction. The particular cases of a sphere and of an approximation for
a needle-like particle, which are the most common shapes employed in
experimental realizations of such self-propelled objects, are obtained from the
general solution in the limits that the aspect ratio approaches one or becomes
very large, respectively.Comment: 18 pages, 5 figures, to appear in European Physical Journal
A cluster theory for a Janus fluid
Recent Monte Carlo simulations on the Kern and Frenkel model of a Janus fluid
have revealed that in the vapour phase there is the formation of preferred
clusters made up of a well-defined number of particles: the micelles and the
vesicles. A cluster theory is developed to approximate the exact clustering
properties stemming from the simulations. It is shown that the theory is able
to reproduce the micellisation phenomenon.Comment: 27 pages, 8 figures, 6 table
Effect of Polydispersity and Anisotropy in Colloidal and Protein Solutions: an Integral Equation Approach
Application of integral equation theory to complex fluids is reviewed, with
particular emphasis to the effects of polydispersity and anisotropy on their
structural and thermodynamic properties. Both analytical and numerical
solutions of integral equations are discussed within the context of a set of
minimal potential models that have been widely used in the literature. While
other popular theoretical tools, such as numerical simulations and density
functional theory, are superior for quantitative and accurate predictions, we
argue that integral equation theory still provides, as in simple fluids, an
invaluable technique that is able to capture the main essential features of a
complex system, at a much lower computational cost. In addition, it can provide
a detailed description of the angular dependence in arbitrary frame, unlike
numerical simulations where this information is frequently hampered by
insufficient statistics. Applications to colloidal mixtures, globular proteins
and patchy colloids are discussed, within a unified framework.Comment: 17 pages, 7 figures, to appear in Interdiscip. Sci. Comput. Life Sci.
(2011), special issue dedicated to Prof. Lesser Blu
Global, regional, and national incidence of six major immune-mediated inflammatory diseases : findings from the global burden of disease study 2019
DATA SHARING STATEMENT : Data used for the analyses are publicly available from the Institute of Health Metrics and Evaluation (http://www.healthdata.org/; http:// ghdx.healthdata.org/gbd-results-tool).BACKGROUND : The causes for immune-mediated inflammatory diseases (IMIDs) are diverse and the incidence trends of IMIDs from specific causes are rarely studied. The study aims to investigate the pattern and trend of IMIDs from 1990 to 2019. METHODS : We collected detailed information on six major causes of IMIDs, including asthma, inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, psoriasis, and atopic dermatitis, between 1990 and 2019, derived from the Global Burden of Disease study in 2019. The average annual percent change (AAPC) in number of incidents and age standardized incidence rate (ASR) on IMIDs, by sex, age, region, and causes, were calculated to quantify the temporal trends. FINDINGS : In 2019, rheumatoid arthritis, atopic dermatitis, asthma, multiple sclerosis, psoriasis, inflammatory bowel disease accounted 1.59%, 36.17%, 54.71%, 0.09%, 6.84%, 0.60% of overall new IMIDs cases, respectively. The ASR of IMIDs showed substantial regional and global variation with the highest in High SDI region, High-income North America, and United States of America. Throughout human lifespan, the age distribution of incident cases from six IMIDs was quite different. Globally, incident cases of IMIDs increased with an AAPC of 0.68 and the ASR decreased with an AAPC of −0.34 from 1990 to 2019. The incident cases increased across six IMIDs, the ASR of rheumatoid arthritis increased (0.21, 95% CI 0.18, 0.25), while the ASR of asthma (AAPC = −0.41), inflammatory bowel disease (AAPC = −0.72), multiple sclerosis (AAPC = −0.26), psoriasis (AAPC = −0.77), and atopic dermatitis (AAPC = −0.15) decreased. The ASR of overall and six individual IMID increased with SDI at regional and global level. Countries with higher ASR in 1990 experienced a more rapid decrease in ASR. INTERPRETATION : The incidence patterns of IMIDs varied considerably across the world. Innovative prevention and integrative management strategy are urgently needed to mitigate the increasing ASR of rheumatoid arthritis and upsurging new cases of other five IMIDs, respectively.The Global Burden of Disease Study is funded by the Bill and Melinda Gates Foundation. Support from Scientific Research Fund of Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital; Shaqra University; the School of Pharmacy, University of Botswana; the Indian Council of Medical Research (ICMR); an Australian National Health and Medical Research Council (NHMRC) Investigator Fellowship; the Italian Center of Precision Medicine and Chronic Inflammation in Milan; the Department of Environmental Health Engineering of Isfahan University of Medical Sciences, Isfahan, Iran; National Health and Medical Research Council (NHMRC), Australia; Jazan University, Saudi Arabia; the Clinician Scientist Program of the Clinician Scientist Academy (UMEA) of the University Hospital Essen; AIMST University, Malaysia; the Department of Community Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India; a Kornhauser Research Fellowship at The University of Sydney; the National Research, Development and Innovation Office Hungary; Taipei Medical University; CREATE Hope Scientific Fellowship from Lung Foundation Australia; the National Institute for Health and Care Research Manchester Biomedical Research Centre and an NIHR Clinical Lectureship in Respiratory Medicine; Kasturba Medical College, Mangalore and Manipal Academy of Higher Education, Manipal; Author Gate Publications; the Cleveland Clinic Foundation and Nassau University Medical center; the Italian Ministry of Health (RRC); King Abdulaziz University (DSR), Jeddah, and King Abdulaziz City for Science & Technology (KACSAT), Saudi Arabia, Science & Technology Development Fund (STDF), and US-Egypt Science & Technology joint Fund: The Academy of Scientific Research and Technology (ASRT), Egypt; partially supported by the Centre of Studies in Geography and Spatial Planning; the International Center of Medical Sciences Research (ICMSR), Islamabad Pakistan; Ain Shams University and the Egyptian Fulbright Mission Program; the Belgian American Educational Foundation; Health Data Research UK; the Spanish Ministry of Science and Innovation, Institute of Health Carlos III, CIBERSAM, and INCLIVA; the Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences; Shaqra University; Saveetha Institute of Medical and Technical Sciences and SRM Institute of Science and Technology; University of Agriculture, Faisalabad-Pakistan; the Chinese University of Hong Kong Research Committee Postdoctoral Fellowship Scheme; the institutional support of the Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Egypt; the European (EU) and Developing Countries Clinical Trials Partnership, the EU Horizon 2020 Framework Programme, UK-National Institute for Health and Care Research, the Mahathir Science Award Foundation and EU-EDCTP.http://www.thelancet.comam2024School of Health Systems and Public Health (SHSPH)SDG-03:Good heatlh and well-bein
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. Methods: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. Findings: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. Interpretation: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed. Funding: Bill & Melinda Gates Foundation
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation
Емпіричний аналіз нових тенденцій у фотоелектричних технологіях фізики конденсованих середовищ
У роботі проведені дослідження поточних розробок в темі, яка розвивається на перетині неорганічного
і органічного матеріалознавства. Неорганічні та органічні структурні компоненти співіснують у
кристалічних системах, які утворюють гібридні неорганічні та органічні каркасні матеріали. Перевага
пористих гібридних каркасів повязана з можливістю їх широкого використання в каталізі та сенсорах.
Дане дослідження в основному зосереджено на магнітних, оптичних, електричних і діелектричних
характеристиках, які зазвичай є змістом фізики конденсованого середовища. Значення емпіричних
досліджень у розумінні процесів соціального, економічного та технологічного розвитку неможливо
переоцінити. В останні роки також спостерігається збільшення осадження тонких плівок гібридних сполук
на тверді поверхні для можливого використання в хімії поверхні та фізиці. Показано, що розвиток нових
технологій, таких як квантові обчислення та спінтроніка, і розуміння того, як матерія поводиться в
екстремальних ситуаціях, демонструють велику різноманітність поведінки в цих областях і відкривають
перспективи для наукової спільноти. В роботі проведено короткий огляд деяких характеристик пористих
матеріалів з точки зору нанотехнології з гібридним підходом. Галузь гібридних технологій має гостру
потребу в теорії та моделюванні.We examine some current developments in a subject that is developing at the intersection of conventional
inorganic and organic materials. Inorganic and organic structural components co-exist in crystalline systems
that make up hybrid inorganic-organic framework materials. Porous hybrid frameworks have established a lot
of concentration in this field during the last several years because of their potential use in catalysis,
separations, and sensors. Our study primarily focuses on the magnetic, optical, electrical, and dielectric
characteristics that are normally the preview of condensed matter physics. The value of empirical research in
understanding the processes of social, economic, and technological development cannot be overstated. In recent
years, there has also been an increase in the deposition of thin films of hybrid compounds onto solid surfaces for
possible use in surface chemistry and physics. The development of new technologies, like quantum computing
and spintronic, and the understanding of how matter behaves under extreme situations, we demonstrate that
these materials display a great variety of behavior in these domains and provide several fascinating prospects
to the physics community. We also provide a brief overview of several of the characteristics of porous materials
in terms of nano technology with hybrid approach. The field of hybrid technology still has a critical need for
theory and simulation
Implementation of number plate detection system for vehicle registration using IOT and recognition using CNN
In the intelligent transportation system the automatic license plate recognition and detection plays a very important role. This application could be used for traffic control security e-payment systems in the toll pay and parking. Many algorithms have been developed to force license plate detection and recognition and all have many advantages and flaws under different situations. With the advent and rise of deep learning concepts in various fields of artificial intelligence, computer vision has developed in leaps and bounds in terms of innovations and methods. Automatic License Plate Recognition has emerged as an effective method to automate the watch keeping process for traffic systems, parking fee structures, and police surveillance. License plate recognition (LPR) is a quite used and mature technology but much work is needed to be done in order to make it perfect. In recent years, the scientific community has made major advances in methodology and performance. This paper tries to aim at summarizing and analyzing various methodologies and progress in LPR in the deep learning era using IOT sensors. Hence, in this paper, an Automatic License Plate Detection and Recognition (ALPDR) system has been proposed having four steps namely License Plate Extraction, Image Pre-processing, Character Segmentation and Character Recognition. For the first three steps (extraction, pre-processing, and segmentation), unique methods have been proposed. As the character recognition is an important step of license plate recognition and detection, four different methods for character recognition have been experimented on, which include Convolution Neural Network (CNN), MobileNet, Inception V3, ResNet 50