20 research outputs found

    Geodesic Deviation in Kaluza-Klein Theories

    Full text link
    We study in detail the equations of the geodesic deviation in multidimensional theories of Kaluza-Klein type. We show that their 4-dimensional space-time projections are identical with the equations obtained by direct variation of the usual geodesic equation in the presence of the Lorentz force, provided that the fifth component of the deviation vector satisfies an extra constraint derived here.Comment: 5 pages, Revtex, 1 figure. To appear in Phys. Rev. D (Brief Report

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    Hydrological connectivity for riverine fish: measurement challenges and research opportunities

    Get PDF
    1. In this review,we first summarize how hydrologic connectivity has been studied for riverine fish capable of moving long distances, and then identify research opportunities that have clear conservation significance. Migratory species, such as anadromous salmonids, are good model organisms for understanding ecological connectivity in rivers because the spatial scale over which movements occur among freshwater habitats is large enough to be easily observed with available techniques; they are often economically or culturally valuable with habitats that can be easily fragmented by human activities; and they integrate landscape conditions from multiple surrounding catchment(s) with in-river conditions. Studies have focussed on three themes: (i) relatively stable connections (connections controlled by processes that act over broad spatio-temporal scales \u3e1000 km2 and \u3e100 years); (ii) dynamic connections (connections controlled by processes acting overfine tomoderate spatio-temporal scales \u3e1–1000 km2and 2. We outline eight challenges to understanding the role of connectivity in riverine fish ecology, organized under three foci: (i) addressing the constraints of river structure; (ii) embracing temporal complexity in hydrologic connectivity; and (iii) managing connectivity for riverine fishes. Challenges include the spatial structure of stream networks, the force and direction of flow, scale-dependence of connectivity, shifting boundaries, complexity of behaviour and life histories and quantifying anthropogenic influence on connectivity and aligning management goals. As we discuss each challenge, we summarize relevant approaches in the literature and provide additional suggestions for improving research and management of connectivity for riverine fishes. 3. Specifically, we suggest that rapid advances are possible in the following arenas: (i) incorporating network structure and river discharge into analyses; (ii) increasing explicit consideration of temporal complexity and fish behaviour in the scope of analyses; and (iii) parsing degrees of human and natural influences on connectivity and defining acceptable alterations. Multiscale analyses are most likely to identify dominant patterns of connections and disconnections, and the appropriate scale at which to focus conservation activities
    corecore