113 research outputs found
Study of Hydrogen Generation of Aluminum-Containing Compositions with Boric Acid
The results of investigations of the kinetics of hydrogen generation compositions with aluminum, chemical activators (hydrated sodium metasilicate, oxide and calcium hydroxide) boric acid. Aluminium and its alloys used for the manufacture of protective sheaths of fuel elements and control rod protection system management, pipelines, tanks, and various support structures in the active zone of atomic reactors RBMK, research water-cooled reactors. The aluminum is protected from direct contact with water and steam surface layer of metal oxide having a high corrosion resistance at high temperatures in powerful radiation fields. However, after removal or when the discontinuity of the oxide layer of activated metal efficiently decompose water to hydrogen. It is established that the hydrogen aluminum-containing compositions is dependent on the concentration of boric acid. The discovery of the involvement of boric acid in these reactions expands the ideas about regularities of chemical processes of formation of hydrogen flowing in the water coolant of VVER reactors with the participation of the corrective additives and impurities
Double volume reflection of a proton beam by a sequence of two bent crystals
The doubling of the angle of beam deflection due to volume reflection of protons by a sequence of two bent silicon crystals was experimentally observed at the 400 GeV proton beam of the CERN SPS. A similar sequence of short bent crystals can be used as an efficient primary collimator for the Large Hadron Collider
Single-fly genome assemblies fill major phylogenomic gaps across the Drosophilidae Tree of Life
Long-read sequencing is driving rapid progress in genome assembly : across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab. Here, we build upon our previous methods to perform amplification-free ONT sequencing of single wild flies obtained either directly from the field or from ethanol-preserved specimens in museum collections, greatly improving the representation of lesser studied drosophilid taxa in whole-genome data. Using Illumina Novaseq X Plus and ONT P2 sequencers with R10.4.1 chemistry, we set a new benchmark for inexpensive hybrid genome assembly at US $150 per genome while assembling genomes from as little as 35 ng of genomic DNA from a single fly. We present 183 new genome assemblies for 179 species as a resource for drosophilid systematics, phylogenetics, and comparative genomics. Of these genomes, 62 are from pooled lab strains and 121 from single adult flies. Despite the sample limitations of working with small insects, most single-fly diploid assemblies are comparable in contiguity (>1 Mb contig N50), completeness (>98% complete dipteran BUSCOs), and accuracy (>QV40 genome-wide with ONT R10.4.1) to assemblies from inbred lines. We present a well-resolved multi-locus phylogeny for 360 drosophilid and 4 outgroup species encompassing all publicly available (as of August 2023) genomes for this group. Finally, we present a Progressive Cactus whole-genome, reference-free alignment built from a subset of 298 suitably high-quality drosophilid genomes. The new assemblies and alignment, along with updated laboratory protocols and computational pipelines, are released as an open resource and as a tool for studying evolution at the scale of an entire insect family
Scintillator ageing of the T2K near detectors from 2010 to 2021
The T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9–2.2% per year. Extrapolation of the degradation rate through to 2040 indicates the recorded light yield should remain above the lower threshold used by the current reconstruction algorithms for all subsystems. This will allow the near detectors to continue contributing to important physics measurements during the T2K-II and Hyper-Kamiokande eras. Additionally, work to disentangle the degradation of the plastic scintillator and wavelength shifting fibres shows that the reduction in light yield can be attributed to the ageing of the plastic scintillator. The long component of the attenuation length of the wavelength shifting fibres was observed to degrade by 1.3–5.4% per year, while the short component of the attenuation length did not show any conclusive degradation
Construction status and prospects of the Hyper-Kamiokande project
The Hyper-Kamiokande project is a 258-kton Water Cherenkov together with a 1.3-MW high-intensity neutrino beam from the Japan Proton Accelerator Research Complex (J-PARC). The inner detector with 186-kton fiducial volume is viewed by 20-inch photomultiplier tubes (PMTs) and multi-PMT modules, and thereby provides state-of-the-art of Cherenkov ring reconstruction with thresholds in the range of few MeVs. The project is expected to lead to precision neutrino oscillation studies, especially neutrino CP violation, nucleon decay searches, and low energy neutrino astronomy. In 2020, the project was officially approved and construction of the far detector was started at Kamioka. In 2021, the excavation of the access tunnel and initial mass production of the newly developed 20-inch PMTs was also started. In this paper, we present a basic overview of the project and the latest updates on the construction status of the project, which is expected to commence operation in 2027
Prospects for neutrino astrophysics with Hyper-Kamiokande
Hyper-Kamiokande is a multi-purpose next generation neutrino experiment. The detector is a two-layered cylindrical shape ultra-pure water tank, with its height of 64 m and diameter of 71 m. The inner detector will be surrounded by tens of thousands of twenty-inch photosensors and multi-PMT modules to detect water Cherenkov radiation due to the charged particles and provide our fiducial volume of 188 kt. This detection technique is established by Kamiokande and Super-Kamiokande. As the successor of these experiments, Hyper-K will be located deep underground, 600 m below Mt. Tochibora at Kamioka in Japan to reduce cosmic-ray backgrounds. Besides our physics program with accelerator neutrino, atmospheric neutrino and proton decay, neutrino astrophysics is an important research topic for Hyper-K. With its fruitful physics research programs, Hyper-K will play a critical role in the next neutrino physics frontier. It will also provide important information via astrophysical neutrino measurements, i.e., solar neutrino, supernova burst neutrinos and supernova relic neutrino. Here, we will discuss the physics potential of Hyper-K neutrino astrophysics
Highly-parallelized simulation of a pixelated LArTPC on a GPU
The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
Statistically Equilibrium States of Load in the Problem of Static Load Characteristics Identification
Тавлинцев Александр Сергеевич, магистр техники и технологии, старший преподаватель, кафедра «Электрические системы и сети», Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, г. Екатеринбург; [email protected].
Суворов Антон Алексеевич, канд. техн. наук, доцент, кафедра «Электрические системы и сети», Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, г. Екатеринбург; [email protected].
A.S. Tavlintsev, [email protected],
A.A. Suvorov, [email protected]Расчёт и анализ установившихся режимов энергосистем является одной из основных решаемых в процессе проектирования и эксплуатации электрических систем задач. При составлении алгебраических уравнений описания установившегося режима энергосистемы электрические нагрузки на подключенные
к шинам подстанций моделируются в виде некоторого уравнения, связывающего номинальные параметры нагрузки и расчётные значения параметров установившегося режима. Задание в математической модели корректных уравнений нагрузки позволяет уменьшить погрешность оценки параметров устано-
вившегося режима. В настоящей работе предлагается один из возможных подходов к выявлению массивов данных, относящихся к близким статическим характеристикам нагрузки по напряжению. Предложено понятие статистически равновесного состояния нагрузки для решения задачи идентификации статической характеристики нагрузки. Обсуждается дальнейшее направление развития данной идеи в части обработки экспериментальных данных. Calculation and analysis of the power grids steady-state modes is one of the main problems addressed in
the process of electrical systems design and operation. When formulating algebraic equations for the steadystate power system description, electrical loads connected to the substation buses of the are modeled in the form of some equation linking the nominal load parameters and the calculated values of steady-state parameters.
The task in the correct mathematical model equations of load allows one to reduce the error estimation of power system steady-state parameters. In this paper we propose one possible approach to identify data sets pertaining to close static characteristics
of the load voltage. The article proposed the concept for a statistically equilibrium load state to solve the problem of static load characteristics identification . The paper discussed the future direction for the idea development in terms of experimental data processing
On feasibility of optimizing the neutronic parameters of a laser system pumped by a pulsed reactor
The paper examines the calculated feasibility of improving the energy characteristics of power pulses in a system consisting of a reactor and a subcritical block. A BARS-type fast neutron reactor is used as a self-quenching pulsed reactor.
The subcritical block is a cylindrical structure comprising laser-active elements, moderator components and two reflectors (internal and external). The internal reflector material is zirconium hydride, and the external reflector material is beryllium. The pumping area containing the laser-active elements consists of zirconium hydride moderator, aluminum and uranium–molybdenum fuel (95% enriched uranium).
The system operates in a pulsed mode. Fast neutrons are generated in the nuclear reactor at the pulse moment, many of which are leakage neutrons entering the subcritical block, slowing down there and inducing fissions of uranium nuclei in the laser-active elements. After the pulse terminates, the reactor changes to a deeply subcritical state, and the laser pulse generation stops.
The neutron kinetics in the system under consideration is modeled based on a modified integral model.
The pulse maximum power and energy in the system's subcritical block, as well as its weight and energy-to-weight ratio are selected as functionals for the optimization. The fissile material and moderator weight and the thickness of the subcritical block's internal and external reflectors are adopted as variables.
The calculations have shown that it is possible to improve the energy characteristics of a reactor-laser system by increasing the amount of the fissile material in the block, not using the moderator in the block and fixing the thickness of the internal zirconium hydride reflector at a level of 3.1cm. It has been shown that a change in the external beryllium reflector thickness leads to a highly multidirectional behavior of the functionals (energy and maximum power, as well as the block weight and energy-to-weight ratio)
- …