2,009 research outputs found

    Statistical mechanics of a colloidal suspension in contact with a fluctuating membrane

    Full text link
    Surface effects are generally prevailing in confined colloidal systems. Here we report on dispersed nanoparticles close to a fluid membrane. Exact results regarding the static organization are derived for a dilute solution of non-adhesive colloids. It is shown that thermal fluctuations of the membrane broaden the density profile, but on average colloids are neither accumulated nor depleted near the surface. The radial correlation function is also evaluated, from which we obtain the effective pair-potential between colloids. This entropically-driven interaction shares many similarities with the familiar depletion interaction. It is shown to be always attractive with range controlled by the membrane correlation length. The depth of the potential well is comparable to the thermal energy, but depends only indirectly upon membrane rigidity. Consequenses for stability of the suspension are also discussed

    Mean Field Fluid Behavior of the Gaussian Core Model

    Full text link
    We show that the Gaussian core model of particles interacting via a penetrable repulsive Gaussian potential, first considered by Stillinger (J. Chem. Phys. 65, 3968 (1976)), behaves like a weakly correlated ``mean field fluid'' over a surprisingly wide density and temperature range. In the bulk the structure of the fluid phase is accurately described by the random phase approximation for the direct correlation function, and by the more sophisticated HNC integral equation. The resulting pressure deviates very little from a simple, mean-field like, quadratic form in the density, while the low density virial expansion turns out to have an extremely small radius of convergence. Density profiles near a hard wall are also very accurately described by the corresponding mean-field free-energy functional. The binary version of the model exhibits a spinodal instability against de-mixing at high densities. Possible implications for semi-dilute polymer solutions are discussed.Comment: 13 pages, 2 columns, ReVTeX epsfig,multicol,amssym, 15 figures; submitted to Phys. Rev. E (change: important reference added

    Counterion Penetration and Effective Electrostatic Interactions in Solutions of Polyelectrolyte Stars and Microgels

    Full text link
    Counterion distributions and effective electrostatic interactions between spherical macroions in polyelectrolyte solutions are calculated via second-order perturbation (linear response) theory. By modelling the macroions as continuous charge distributions that are permeable to counterions, analytical expressions are obtained for counterion profiles and effective pair interactions in solutions of star-branched and microgel macroions. The counterions are found to penetrate stars more easily than microgels, with important implications for screening of bare macroion interactions. The effective pair interactions are Yukawa in form for separated macroions, but are softly repulsive and bounded for overlapping macroions. A one-body volume energy, which depends on the average macroion concentration, emerges naturally in the theory and contributes to the total free energy.Comment: 15 pages, 5 figure

    A conservative control strategy for variable-speed stall-regulated wind turbines

    Full text link
    Simulation models of a variable-speed, fixed-pitch wind turbine were investigated to evaluate the feasibility of constraining rotor speed and power output without the benefit of active aerodynamic control devices. A strategy was postulated to control rotational speed by specifying the demanded generator torque. By controlling rotor speed in relation to wind speed, the aerodynamic power extracted by the blades from the wind was manipulated. Specifically, the blades were caused to stall in high winds. In low and moderate winds, the demanded generator torque and the resulting rotor speed were controlled to cause the wind turbine to operate near maximum efficiency. Using the developed models, simulations were conducted of operation in turbulent winds. Results indicated that rotor speed and power output were well regulated. Preliminary investigations of system dynamics showed that, compared to fixed-speed operation, variable-speed operation caused cyclic loading amplitude to be reduced for the turbine blades and low-speed shaft and slightly increased for the tower loads. This result suggests a favorable impact on fatigue life from implementation of the proposed control strategy

    Momentum Distributions of Particles from Three--Body Halo Fragmentation: Final State Interactions

    Get PDF
    Momentum distributions of particles from nuclear break-up of fast three-body halos are calculated consistently, and applied to 11^{11}Li. The same two-body interactions between the three particles are used to calculate the ground state structure and the final state of the reaction processes. We reproduce the available momentum distributions from 11^{11}Li fragmentation, together with the size and energy of 11^{11}Li, with a neutron-core relative state containing a pp-state admixture of 20\%-30\%. The available fragmentation data strongly suggest an ss-state in 10^{10}Li at about 50 keV, and indicate a pp-state around 500 keV.Comment: 11 pages (RevTeX), 3 Postscript figures (uuencoded postscript file attached at the end of the LaTeX file). To be published in Phys. Rev.

    Cosmological constant, violation of cosmological isotropy and CMB

    Full text link
    We suggest that the solution to the cosmological vacuum energy puzzle does not require any new field beyond the standard model, but rather can be explained as a result of the interaction of the infrared sector of the effective theory of gravity with standard model fields. The cosmological constant in this framework can be presented in terms of QCD parameters and the Hubble constant HH as follows, \epsilon_{vac} \sim H \cdot m_q\la\bar{q}q\ra /m_{\eta'} \sim (4.3\cdot 10^{-3} \text{eV})^4, which is amazingly close to the observed value today. In this work we explain how this proposal can be tested by analyzing CMB data. In particular, knowing the value of the observed cosmological constant fixes univocally the smallest size of the spatially flat, constant time 3d hypersurface which, for instance in the case of an effective 1-torus, is predicted to be around 74 Gpc. We also comment on another important prediction of this framework which is a violation of cosmological isotropy. Such anisotropy is indeed apparently observed by WMAP, and will be confirmed (or ruled out) by future PLANCK data.Comment: uses revtex4 - v2 as publishe

    Combining quantum and classical density functional theory for ion-electron mixtures

    Full text link
    We combine techniques from quantum and from classical density functional theory (DFT) to describe electron-ion mixtures. For homogeneous systems, we show how to calculate ion-ion and ion-electron correlation functions within Chihara's quantum hypernetted chain approximation, which we derive within a DFT formulation. We also sketch out how to apply the DFT formulation to inhomogeneous electron-ion mixtures, and use this to study the electron distribution at the liquid-solid interface of Al.Comment: to be published in J. Non-Cryst. Solids, LAM 11 special issu

    Searching for hidden mirror symmetries in CMB fluctuations from WMAP 7 year maps

    Full text link
    We search for hidden mirror symmetries at large angular scales in the WMAP 7 year Internal Linear Combination map of CMB temperature anisotropies using global pixel based estimators introduced for this aim. Two different axes are found for which the CMB intensity pattern is anomalously symmetric (or anti-symmetric) under reflection with respect to orthogonal planes at the 99.84(99.96)% CL (confidence level), if compared to a result for an arbitrary axis in simulations without the symmetry. We have verified that our results are robust to the introduction of the galactic mask. The direction of such axes is close to the CMB kinematic dipole and nearly orthogonal to the ecliptic plane, respectively. If instead the real data are compared to those in simulations taken with respect to planes for which the maximal mirror symmetry is generated by chance, the confidence level decreases to 92.39 (76.65)%. But when the effect in question translates into the anomalous alignment between normals to planes of maximal mirror (anti)-symmetry and these natural axes mentioned. We also introduce the representation of the above estimators in the harmonic domain, confirming the results obtained in the pixel one. The symmetry anomaly is shown to be almost entirely due to low multipoles, so it may have a cosmological and even primordial origin. Contrary, the anti-symmetry one is mainly due to intermediate multipoles that probably suggests its non-fundamental nature. We have demonstrated that these anomalies are not connected to the known issue of the low variance in WMAP observations and we have checked that axially symmetric parts of these anomalies are small, so that the axes are not the symmetry ones.Comment: 18 pages, 10 figures, 2 tables. Consideration and discussion expanded, 5 figures and 1 table added, main conclusions unchange

    Liquid racism and the Danish Prophet Muhammad cartoons

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 The Author.This article examines reactions to the October 2005 publication of the Prophet Muhammad cartoons in the Danish newspaper Jyllands-Posten. It does so by using the concept of ‘liquid racism’. While the controversy arose because it is considered blasphemous by many Muslims to create images of the Prophet Muhammad, the article argues that the meaning of the cartoons is multidimensional, that their analysis is significantly more complex than most commentators acknowledge, and that this complexity can best be addressed via the concept of liquid racism. The article examines the liquidity of the cartoons in relation to four readings. These see the cartoons as: (1) a criticism of Islamic fundamentalism; (2) blasphemous images; (3) Islamophobic and racist; and (4) satire and a defence of freedom of speech. Finally, the relationship between postmodernity and the rise of fundamentalism is discussed because the cartoons, reactions to them, and Islamic fundamentalism, all contain an important postmodern dimension.ESR
    • 

    corecore