201 research outputs found
Significance of the presence of antibiotics on the microbial consortium in wastewater - The case of nitrofurantoin and furazolidone.
Antibiotics in wastewater leads to migration of pollutants and disrupts natural processes of mineralization of organic matter. In order to understand the mechanism of this, research was undertaken on the influence of nitrofurantoin (NFT) and furazolidone (FZD), on the behaviour of a consortium of microorganisms present in a model wastewater in a bioreactor. Our study confirmed biodegradation of the antibiotics by the microbial consortium, with the degradation efficiency within 10 days of 65% for FZD, but only 20% for NFT. The kinetic study proved that the presence of analysed antibiotics had no adverse effect on the microbes, but the consortium behaviour differ significantly with the NFT reducing the consumption of organic carbon in wastewater and increasing the production of extracellular biopolymeric and volatile organic compounds, and the FZD reducing assimilation of other carbon sources to a less extent, at the expense of cellular focus on biodegradation of this antibiotic
Eupraxia, a step toward a plasma-wakefield based accelerator with high beam quality
The EuPRAXIA project aims at designing the world's first accelerator based on advanced plasma-wakefield techniques to deliver 5 GeV electron beams that simultaneously have high charge, low emittance and low energy spread, which are required for applications by future user communities. Meeting this challenging objective will only be possible through dedicated effort. Many injection/acceleration schemes and techniques have been explored by means of thorough simulations in more than ten European research institutes. This enables selection of the most appropriate methods for solving each particular problem. The specific challenge of generating, extracting and transporting high charge beams, while maintaining the high quality needed for user applications, are being tackled using innovative approaches. This article highlights preliminary results obtained by the EuPRAXIA collaboration, which also exhibit the required laser and plasma parameters
Rotating Higher Spin Partition Functions and Extended BMS Symmetries
We evaluate one-loop partition functions of higher-spin fields in thermal
flat space with angular potentials; this computation is performed in arbitrary
space-time dimension, and the result is a simple combination of Poincar\'e
characters. We then focus on dimension three, showing that suitable products of
one-loop partition functions coincide with vacuum characters of higher-spin
asymptotic symmetry algebras at null infinity. These are extensions of the
bms_3 algebra that emerges in pure gravity, and we propose a way to build their
unitary representations and to compute the associated characters. We also
extend our investigations to supergravity and to a class of gauge theories
involving higher-spin fermionic fields.Comment: 58 pages; clarifications and references added; version to be
published in JHE
Eupraxia, a step toward a plasma-wakefield based accelerator with high beam quality
The EuPRAXIA project aims at designing the world's first accelerator based on advanced plasma-wakefield techniques to deliver 5 GeV electron beams that simultaneously have high charge, low emittance and low energy spread, which are required for applications by future user communities. Meeting this challenging objective will only be possible through dedicated effort. Many injection/acceleration schemes and techniques have been explored by means of thorough simulations in more than ten European research institutes. This enables selection of the most appropriate methods for solving each particular problem. The specific challenge of generating, extracting and transporting high charge beams, while maintaining the high quality needed for user applications, are being tackled using innovative approaches. This article highlights preliminary results obtained by the EuPRAXIA collaboration, which also exhibit the required laser and plasma parameters
Analysis of the capacity of google trends to measure interest in conservation topics and the role of online news
With the continuous growth of internet usage, Google Trends has emerged as a source of information to investigate how social trends evolve over time. Knowing how the level of interest in conservation topics--approximated using Google search volume--varies over time can help support targeted conservation science communication. However, the evolution of search volume over time and the mechanisms that drive peaks in searches are poorly understood. We conducted time series analyses on Google search data from 2004 to 2013 to investigate: (i) whether interests in selected conservation topics have declined and (ii) the effect of news reporting and academic publishing on search volume. Although trends were sensitive to the term used as benchmark, we did not find that public interest towards conservation topics such as climate change, ecosystem services, deforestation, orangutan, invasive species and habitat loss was declining. We found, however, a robust downward trend for endangered species and an upward trend for ecosystem services. The quantity of news articles was related to patterns in Google search volume, whereas the number of research articles was not a good predictor but lagged behind Google search volume, indicating the role of news in the transfer of conservation science to the public
Status of the Horizon 2020 EuPRAXIA conceptual design study
The Horizon 2020 project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to free-electron laser pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for high-energy physics detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure
Insight from the draft genome of Dietzia cinnamea P4 reveals mechanisms of survival in complex tropical soil habitats and biotechnology potential
The draft genome of Dietzia cinnamea strain P4 was determined using pyrosequencing. In total, 428 supercontigs were obtained and analyzed. We here describe and interpret the main features of the draft genome. The genome contained a total of 3,555,295 bp, arranged in a single replicon with an average G+C percentage of 70.9%. It revealed the presence of complete pathways for basically all central metabolic routes. Also present were complete sets of genes for the glyoxalate and reductive carboxylate cycles. Autotrophic growth was suggested to occur by the presence of genes for aerobic CO oxidation, formate/formaldehyde oxidation, the reverse tricarboxylic acid cycle and the 3-hydropropionate cycle for CO2 fixation. Secondary metabolism was evidenced by the presence of genes for the biosynthesis of terpene compounds, frenolicin, nanaomycin and avilamycin A antibiotics. Furthermore, a probable role in azinomycin B synthesis, an important product with antitumor activity, was indicated. The complete alk operon for the degradation of n-alkanes was found to be present, as were clusters of genes for biphenyl ring dihydroxylation. This study brings new insights in the genetics and physiology of D. cinnamea P4, which is useful in biotechnology and bioremediation
Status of the Horizon 2020 EuPRAXIA conceptual design study
The Horizon 2020 project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to free-electron laser pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for high-energy physics detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure
EuPRAXIA - A compact, cost-efficient particle and radiation source
Plasma accelerators present one of the most suitable candidates for the development of more compact particle acceleration technologies, yet they still lag behind radiofrequency (RF)-based devices when it comes to beam quality, control, stability and power efficiency. The Horizon 2020-funded project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") aims to overcome the first three of these hurdles by developing a conceptual design for a first international user facility based on plasma acceleration. In this paper we report on the main features, simulation studies and potential applications of this future research infrastructure
- …