938 research outputs found

    Magnetic properties and domain structure of (Ga,Mn)As films with perpendicular anisotropy

    Full text link
    The ferromagnetism of a thin GaMnAs layer with a perpendicular easy anisotropy axis is investigated by means of several techniques, that yield a consistent set of data on the magnetic properties and the domain structure of this diluted ferromagnetic semiconductor. The magnetic layer was grown under tensile strain on a relaxed GaInAs buffer layer using a procedure that limits the density of threading dislocations. Magnetometry, magneto-transport and polar magneto-optical Kerr effect (PMOKE) measurements reveal the high quality of this layer, in particular through its high Curie temperature (130 K) and well-defined magnetic anisotropy. We show that magnetization reversal is initiated from a limited number of nucleation centers and develops by easy domain wall propagation. Furthermore, MOKE microscopy allowed us to characterize in detail the magnetic domain structure. In particular we show that domain shape and wall motion are very sensitive to some defects, which prevents a periodic arrangement of the domains. We ascribed these defects to threading dislocations emerging in the magnetic layer, inherent to the growth mode on a relaxed buffer

    Evaluation of Serum 1,5 Anhydroglucitol Levels as a Clinical Test to Differentiate Subtypes of Diabetes

    Get PDF
    OBJECTIVE: Assignment of the correct molecular diagnosis in diabetes is necessary for informed decisions regarding treatment and prognosis. Better clinical markers would facilitate discrimination and prioritization for genetic testing between diabetes subtypes. Serum 1,5 anhydroglucitol (1,5AG) levels were reported to differentiate maturity-onset diabetes of the young due to HNF1A mutations (HNF1A-MODY) from type 2 diabetes, but this requires further validation. We evaluated serum 1,5AG in a range of diabetes subtypes as an adjunct for defining diabetes etiology. RESEARCH DESIGN AND METHODS: 1,5AG was measured in U.K. subjects with: HNF1A-MODY (n = 23), MODY due to glucokinase mutations (GCK-MODY, n = 23), type 1 diabetes (n = 29), latent autoimmune diabetes in adults (LADA, n = 42), and type 2 diabetes (n = 206). Receiver operating characteristic curve analysis was performed to assess discriminative accuracy of 1,5AG for diabetes etiology. RESULTS: Mean (SD range) 1,5AG levels were: GCK-MODY 13.06 microg/ml (5.74-29.74), HNF1A-MODY 4.23 microg/ml (2.12-8.44), type 1 diabetes 3.09 microg/ml (1.45-6.57), LADA 3.46 microg/ml (1.42-8.45), and type 2 diabetes 5.43 (2.12-13.23). Levels in GCK-MODY were higher than in other groups (P < 10(-4) vs. each group). HNF1A-MODY subjects showed no difference in unadjusted 1,5AG levels from type 2 diabetes, type 1 diabetes, and LADA. Adjusting for A1C revealed a difference between HNF1A-MODY and type 2 diabetes (P = 0.001). The discriminative accuracy of unadjusted 1,5AG levels was 0.79 for GCK-MODY versus type 2 diabetes and 0.86 for GCK-MODY versus HNF1A-MODY but was only 0.60 for HNF1A-MODY versus type 2 diabetes. CONCLUSIONS: In our dataset, serum 1,5AG performed well in discriminating GCK-MODY from other diabetes subtypes, particularly HNF1A-MODY. Measurement of 1,5AG levels could inform decisions regarding MODY diagnostic testing

    Strong fields induce ultrafast rearrangement of H-atoms in H2_2O

    Full text link
    H-atoms in H2_2O are rearranged by strong optical fields generated by intense, 10 fs laser pulses to form H2+_2^+, against prevailing wisdom that strong fields inevitably lead to multiple molecular ionization and the subsequent Coulomb explosion into fragments. This atomic rearrangement is shown to occur within a single 10 fs pulse. Comparison with results obtained with \sim300-attosecond long strong fields generated using fast Si8+^{8+} ions helps establish thresholds for field strength and time required for such rearrangements. Quantum-chemical calculations reveal that H2+_2^+ originates in the 1^1A state of H2_2O2+^{2+} when the O-H bond elongates to 1.15 a.u. and the H-O-H angle becomes 120o^o. Bond formation on the ultrafast timescale of molecular vibrations (10 fs for H2+_2^+) has hitherto not been reported.Comment: Submitted to Physical Review Lotter

    Thermal Effects in the dynamics of disordered elastic systems

    Full text link
    Many seemingly different macroscopic systems (magnets, ferroelectrics, CDW, vortices,..) can be described as generic disordered elastic systems. Understanding their static and dynamics thus poses challenging problems both from the point of view of fundamental physics and of practical applications. Despite important progress many questions remain open. In particular the temperature has drastic effects on the way these systems respond to an external force. We address here the important question of the thermal effect close to depinning, and whether these effects can be understood in the analogy with standard critical phenomena, analogy so useful to understand the zero temperature case. We show that close to the depinning force temperature leads to a rounding of the depinning transition and compute the corresponding exponent. In addition, using a novel algorithm it is possible to study precisely the behavior close to depinning, and to show that the commonly accepted analogy of the depinning with a critical phenomenon does not fully hold, since no divergent lengthscale exists in the steady state properties of the line below the depinning threshold.Comment: Proceedings of the International Workshop on Electronic Crystals, Cargese(2008

    Quantum Magnetic Deflagration in Mn12 Acetate

    Get PDF
    We report controlled ignition of magnetization reversal avalanches by surface acoustic waves in a single crystal of Mn12 acetate. Our data show that the speed of the avalanche exhibits maxima on the magnetic field at the tunneling resonances of Mn12. Combined with the evidence of magnetic deflagration in Mn12 acetate (Suzuki et al., cond-mat/0506569) this suggests a novel physical phenomenon: deflagration assisted by quantum tunneling.Comment: 4 figure

    Spectral representation of the effective dielectric constant of graded composites

    Full text link
    We generalize the Bergman-Milton spectral representation, originally derived for a two-component composite, to extract the spectral density function for the effective dielectric constant of a graded composite. This work has been motivated by a recent study of the optical absorption spectrum of a graded metallic film [Applied Physics Letters, 85, 94 (2004)] in which a broad surface-plasmon absorption band has been shown to be responsible for enhanced nonlinear optical response as well as an attractive figure of merit. It turns out that, unlike in the case of homogeneous constituent components, the characteristic function of a graded composite is a continuous function because of the continuous variation of the dielectric function within the constituent components. Analytic generalization to three dimensional graded composites is discussed, and numerical calculations of multilayered composites are given as a simple application.Comment: Physical Review E, submitted for publication

    Domain structure in CoFeB thin films with perpendicular magnetic anisotropy

    Full text link
    Domain structures in CoFeB-MgO thin films with a perpendicular easy magnetization axis were observed by magneto-optic Kerr-effect microscopy at various temperatures. The domain wall surface energy was obtained by analyzing the spatial period of the stripe domains and fitting established domain models to the period. In combination with SQUID measurements of magnetization and anisotropy energy, this leads to an estimate of the exchange stiffness and domain wall width in these films. These parameters are essential for determining whether domain walls will form in patterned structures and devices made of such materials

    Spin Transfer Torques in MnSi at Ultra-low Current Densities

    Full text link
    Spin manipulation using electric currents is one of the most promising directions in the field of spintronics. We used neutron scattering to observe the influence of an electric current on the magnetic structure in a bulk material. In the skyrmion lattice of MnSi, where the spins form a lattice of magnetic vortices similar to the vortex lattice in type II superconductors, we observe the rotation of the diffraction pattern in response to currents which are over five orders of magnitude smaller than those typically applied in experimental studies on current-driven magnetization dynamics in nanostructures. We attribute our observations to an extremely efficient coupling of inhomogeneous spin currents to topologically stable knots in spin structures
    corecore