158 research outputs found

    Global Developmental Gene Expression and Pathway Analysis of Normal Brain Development and Mouse Models of Human Neuronal Migration Defects

    Get PDF
    Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε), and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can be used to define novel candidates for related human diseases

    Lis1–Nde1-dependent neuronal fate control determines cerebral cortical size and lamination

    Get PDF
    Neurons in the cerebral cortex originate predominantly from asymmetrical divisions of polarized radial glial or neuroepithelial cells. Fate control of neural progenitors through regulating cell division asymmetry determines the final cortical neuronal number and organization. Haploinsufficiency of human LIS1 results in type I lissencephaly (smooth brain) with severely reduced surface area and laminar organization of the cerebral cortex. Here we show that LIS1 and its binding protein Nde1 (mNudE) regulate the fate of radial glial progenitors collaboratively. Mice with an allelic series of Lis1 and Nde1 double mutations displayed a striking dose-dependent size reduction and de-lamination of the cerebral cortex. The neocortex of the Lis1–Nde1 double mutant mice showed over 80% reduction in surface area and inverted neuronal layers. Dramatically increased neuronal differentiation at the onset of corticogenesis in the mutant led to overproduction and abnormal development of earliest-born preplate neurons and Cajal–Retzius cells at the expense of progenitors. While both Lis1 and Nde1 are known to regulate the mitotic spindle orientation, only a moderate alteration in mitotic cleavage orientation was detected in the Lis1–Nde1 double deficient progenitors. Instead, a striking change in the morphology of metaphase progenitors with reduced apical attachment to the ventricular surface and weakened lateral contacts to neighboring cells appear to hinder the accurate control of cell division asymmetry and underlie the dramatically increased neuronal differentiation. Our data suggest that maintaining the shape and cell–cell interactions of radial glial neuroepithelial progenitors by the Lis1–Nde1 complex is essential for their self renewal during the early phase of corticogenesis

    Genome-Wide Survey for Biologically Functional Pseudogenes

    Get PDF
    According to current estimates there exist about 20,000 pseudogenes in a mammalian genome. The vast majority of these are disabled and nonfunctional copies of protein-coding genes which, therefore, evolve neutrally. Recent findings that a Makorin1 pseudogene, residing on mouse Chromosome 5, is, indeed, in vivo vital and also evolutionarily preserved, encouraged us to conduct a genome-wide survey for other functional pseudogenes in human, mouse, and chimpanzee. We identify to our knowledge the first examples of conserved pseudogenes common to human and mouse, originating from one duplication predating the human–mouse species split and having evolved as pseudogenes since the species split. Functionality is one possible way to explain the apparently contradictory properties of such pseudogene pairs, i.e., high conservation and ancient origin. The hypothesis of functionality is tested by comparing expression evidence and synteny of the candidates with proper test sets. The tests suggest potential biological function. Our candidate set includes a small set of long-lived pseudogenes whose unknown potential function is retained since before the human–mouse species split, and also a larger group of primate-specific ones found from human–chimpanzee searches. Two processed sequences are notable, their conservation since the human–mouse split being as high as most protein-coding genes; one is derived from the protein Ataxin 7-like 3 (ATX7NL3), and one from the Spinocerebellar ataxia type 1 protein (ATX1). Our approach is comparative and can be applied to any pair of species. It is implemented by a semi-automated pipeline based on cross-species BLAST comparisons and maximum-likelihood phylogeny estimations. To separate pseudogenes from protein-coding genes, we use standard methods, utilizing in-frame disablements, as well as a probabilistic filter based on Ka/Ks ratios

    Neurodevelopmental and neuropsychiatric behaviour defects arise from 14-3-3ζ deficiency.

    Get PDF
    Complex neuropsychiatric disorders are believed to arise from multiple synergistic deficiencies within connected biological networks controlling neuronal migration, axonal pathfinding and synapse formation. Here, we show that deletion of 14-3-3ζ causes neurodevelopmental anomalies similar to those seen in neuropsychiatric disorders such as schizophrenia, autism spectrum disorder and bipolar disorder. 14-3-3ζ-deficient mice displayed striking behavioural and cognitive deficiencies including a reduced capacity to learn and remember, hyperactivity and disrupted sensorimotor gating. These deficits are accompanied by subtle developmental abnormalities of the hippocampus that are underpinned by aberrant neuronal migration. Significantly, 14-3-3ζ-deficient mice exhibited abnormal mossy fibre navigation and glutamatergic synapse formation. The molecular basis of these defects involves the schizophrenia risk factor, DISC1, which interacts isoform specifically with 14-3-3ζ. Our data provide the first evidence of a direct role for 14-3-3ζ deficiency in the aetiology of neurodevelopmental disorders and identifies 14-3-3ζ as a central risk factor in the schizophrenia protein interaction network

    Formin 1-Isoform IV Deficient Cells Exhibit Defects in Cell Spreading and Focal Adhesion Formation

    Get PDF
    Background: Regulation of the cytoskeleton is a central feature of cell migration. The formin family of proteins controls the rate of actin nucleation at its barbed end. Thus, formins are predicted to contribute to several important cell processes such as locomotion, membrane ruffling, vesicle endocytosis, and stress fiber formation and disassociation. Methodology/Principal Findings: In this study we investigated the functional role of Formin1-isoform4 (Fmn1-IV) by using genetically null primary cells that displayed augmented protrusive behaviour during wound healing and delayed cell spreading. Cells deficient of Fmn1-IV also showed reduced efficiency of focal adhesion formation. Additionally, we generated an enhanced green fluorescence protein (EGFP)-fused Fmn1-IV knock-in mouse to monitor the endogenous subcellular localization of Fmn1-IV. Its localization was found within the cytoplasm and along microtubules, yet it was largely excluded from adherens junctions. Conclusions/Significance: It was determined that Fmn1-IV, as an actin nucleator, contributes to protrusion of the cell’s leading edge and focal adhesion formation, thus contributing to cell motility

    Genome-wide expression assay comparison across frozen and fixed postmortem brain tissue samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression assays have been shown to yield high quality genome-wide data from partially degraded RNA samples. However, these methods have not yet been applied to postmortem human brain tissue, despite their potential to overcome poor RNA quality and other technical limitations inherent in many assays. We compared cDNA-mediated annealing, selection, and ligation (DASL)- and <it>in vitro </it>transcription (IVT)-based genome-wide expression profiling assays on RNA samples from artificially degraded reference pools, frozen brain tissue, and formalin-fixed brain tissue.</p> <p>Results</p> <p>The DASL-based platform produced expression results of greater reliability than the IVT-based platform in artificially degraded reference brain RNA and RNA from frozen tissue-based samples. Although data associated with a small sample of formalin-fixed RNA samples were poor when obtained from both assays, the DASL-based platform exhibited greater reliability in a subset of probes and samples.</p> <p>Conclusions</p> <p>Our results suggest that the DASL-based gene expression-profiling platform may confer some advantages on mRNA assays of the brain over traditional IVT-based methods. We ultimately consider the implications of these results on investigations of neuropsychiatric disorders.</p

    Sfrp Controls Apicobasal Polarity and Oriented Cell Division in Developing Gut Epithelium

    Get PDF
    Epithelial tubular morphogenesis leading to alteration of organ shape has important physiological consequences. However, little is known regarding the mechanisms that govern epithelial tube morphogenesis. Here, we show that inactivation of Sfrp1 and Sfrp2 leads to reduction in fore-stomach length in mouse embryos, which is enhanced in the presence of the Sfrp5 mutation. In the mono-cell layer of fore-stomach epithelium, cell division is normally oriented along the cephalocaudal axis; in contrast, orientation diverges in the Sfrps-deficient fore-stomach. Cell growth and apoptosis are not affected in the Sfrps-deficient fore-stomach epithelium. Similarly, cell division orientation in fore-stomach epithelium diverges as a result of inactivation of either Stbm/Vangl2, an Fz/PCP component, or Wnt5a. These observations indicate that the oriented cell division, which is controlled by the Fz/PCP pathway, is one of essential components in fore-stomach morphogenesis. Additionally, the small intestine epithelium of Sfrps compound mutants fails to maintain proper apicobasal polarity; the defect was also observed in Wnt5a-inactivated small intestine. In relation to these findings, Sfrp1 physically interacts with Wnt5a and inhibits Wnt5a signaling. We propose that Sfrp regulation of Wnt5a signaling controls oriented cell division and apicobasal polarity in the epithelium of developing gut

    Formin1 Mediates the Induction of Dendritogenesis and Synaptogenesis by Neurogenin3 in Mouse Hippocampal Neurons

    Get PDF
    Neurogenin3, a proneural transcription factor controlled by Notch receptor, has been recently shown to regulate dendritogenesis and synaptogenesis in mouse hippocampal neurons. However, little is known about the molecular mechanisms involved in these actions of Ngn3. We have used a microarray analysis to identify Ngn3 regulated genes related with cytoskeleton dynamics. One of such genes is Fmn1, whose protein, Formin1, is associated with actin and microtubule cytoskeleton. Overexpression of the Fmn1 isoform-Ib in cultured mouse hippocampal neurons induced an increase in the number of primary dendrites and in the number of glutamatergic synaptic inputs at 4 days in vitro. The same changes were provoked by overexpression of Ngn3. In addition downregulation of Fmn1 by the use of Fmn1-siRNAs impaired such morphological and synaptic changes induced by Ngn3 overexpression in neurons. These results reveal a previously unknown involvement of Formin1 in dendritogenesis and synaptogenesis and indicate that this protein is a key component of the Ngn3 signaling pathway that controls neuronal differentiation
    corecore