702 research outputs found

    Near UV atmospheric absorption measurements from the DC-8 aircraft during the 1987 airborne Antarctic ozone experiment

    Get PDF
    During the Airborne Antarctic Ozone Experiment from 28 August to 30 September 1987 near UV zenith scattered sky measurements were made over Antarctic from the NASA DC-8 aircraft using a one third m spectrograph equipped with a diode-array detector. Scattered sky light data in the wavelength range 348 nm to 388 nm was spectrally analyzed for O3, NO2, OClO, and BrO column abundances. Slant column abudances of O3, NO2, OClO and BrO were determined, using a computer algorithm of non-linear and linear least square correlation of Antarctic scattered sky spectra to laboratory absorption cross section data. Using measured vertical electrochemical sonde ozone profiles from Palmer, Halley Bay, and the South Pole Stations the slant columns of O3 were converted into vertical column abundances. The vertical column amounts of NO2, OClO, and BrO were derived using vertical profiles calculated by a chemical model appropriate for Antarctica. NO2 vertical column abundances show steep latitudinal decrease with increasing latitude for all 13 flights carried out during the mission. In the regions where NO2 abudances are low, OClO and BrO were observed. The spatial and temporal vertical column abundances of these species are discussed in the context of the chemistry and dynamics in the antarctic polar vortex during the austral spring

    Technical Note: Reanalysis of upper troposphere humidity data from the MOZAIC programme for the period 1994 to 2009

    Get PDF
    In-situ observational data on the relative humidity (RH) in the upper troposphere and lowermost stratosphere (UT/LS), or tropopause region, respectively, collected aboard civil passenger aircraft in the MOZAIC (Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by in-service AIrbus airCraft) programme were reanalysed for the period 2000 to 2009. Previous analyses of probability distribution functions (PDF) of upper troposphere humidity (UTH) data from MOZAIC observations from year 2000 and later indicated a bias of UTH data towards higher RH values compared to data of the period 1994 to 1999. As a result, PDF of UTH data show a substantial fraction of observations above 100% relative humidity with respect to liquid water (RHliquid), which is not possible from thermodynamical principles. An in-depth reanalysis of the data set recovered a calibration artefact from year 2000 on, while data of the previous period from 1994 to 1999 were found to be correct. The full data set for 2000–2009 was reanalysed applying the adjusted calibration procedure. Applied correction schemes and a revised error analysis are presented along with the reanalysed PDF of RHliquid and RHice

    Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR

    Get PDF
    HONO formation has been proposed as an important OH radical source in simulation chambers for more than two decades. Besides the heterogeneous HONO formation by the dark reaction of NO<sub>2</sub> and adsorbed water, a photolytic source has been proposed to explain the elevated reactivity in simulation chamber experiments. However, the mechanism of the photolytic process is not well understood so far. As expected, production of HONO and NO<sub>x</sub> was also observed inside the new atmospheric simulation chamber SAPHIR under solar irradiation. This photolytic HONO and NO<sub>x</sub> formation was studied with a sensitive HONO instrument under reproducible controlled conditions at atmospheric concentrations of other trace gases. It is shown that the photolytic HONO source in the SAPHIR chamber is not caused by NO<sub>2</sub> reactions and that it is the only direct NO<sub>y</sub> source under illuminated conditions. In addition, the photolysis of nitrate which was recently postulated for the observed photolytic HONO formation on snow, ground, and glass surfaces, can be excluded in the chamber. A photolytic HONO source at the surface of the chamber is proposed which is strongly dependent on humidity, on light intensity, and on temperature. An empirical function describes these dependencies and reproduces the observed HONO formation rates to within 10%. It is shown that the photolysis of HONO represents the dominant radical source in the SAPHIR chamber for typical tropospheric O<sub>3</sub>/H<sub>2</sub>O concentrations. For these conditions, the HONO concentrations inside SAPHIR are similar to recent observations in ambient air

    Heterogeneous processes: Laboratory, field, and modeling studies

    Get PDF
    The efficiencies of chemical families such as ClO(x) and NO(x) for altering the total abundance and distribution of stratospheric ozone are controlled by a partitioning between reactive (active) and nonreactive (reservoir) compounds within each family. Gas phase thermodynamics, photochemistry, and kinetics would dictate, for example, that only about 1 percent of the chlorine resident in the lower stratosphere would be in the form of active Cl or ClO, the remainder existing in the reservoir compounds HCl and ClONO2. The consistency of this picture was recently challenged by the recognition that important chemical transformations take place on polar regions: the Airborne Antarctic Ozone Experiment (AAOE) and the Airborne Arctic Stratospheric Expedition (AASA). Following the discovery of the Antarctic ozone hole, Solomon et al. suggested that the heterogeneous chemical reaction: ClONO2(g)+HCl(s) yields Cl2(g)+HNO3(s) could play a key role in converting chlorine from inactive forms into a species (Cl2) that would rapidly dissociate in sunlight to liberate atomic chlorine and initiate ozone depletion. The symbols (s) and (g) denote solid phase, or adsorbed onto a solid surface, and gas phase, respectively, and represent the approach by which such a reaction is modeled rather than the microscopic details of the reaction. The reaction was expected to be most important at altitudes where PSC's were most prevalent (10 to 25 km), thereby extending the altitude range over which chlorine compounds can efficiently destroy ozone from the 35 to 45 km region (where concentrations of active chlorine are usually highest) to lower altitudes where the ozone concentration is at its peak. This chapter will briefly review the current state of knowledge of heterogeneous processes in the stratosphere, emphasizing those results obtained since the World Meteorological Organization (WMO) conference. Sections are included on laboratory investigations of heterogeneous reactions, the characteristics and climatology of PSC's, stratospheric sulfate aerosols, and evidence of heterogeneous chemical processing

    Physicians' Attitudes Toward Complementary and Alternative Medicine and Their Knowledge of Specific Therapies: A Survey at an Academic Medical Center

    Get PDF
    The purpose of this study was to evaluate the attitudes of physicians at an academic medical center toward complementary and alternative medicine (CAM) therapies and the physicians' knowledge base regarding common CAM therapies. A link to a Web-based survey was e-mailed to 660 internists at Mayo Clinic in Rochester, MN, USA. Physicians were asked about their attitudes toward CAM in general and their knowledge regarding specific CAM therapies. The level of evidence a physician would require before incorporating such therapies into clinical care was also assessed. Of the 233 physicians responding to the survey, 76% had never referred a patient to a CAM practitioner. However, 44% stated that they would refer a patient if a CAM practitioner were available at their institution. Fifty-seven percent of physicians thought that incorporating CAM therapies would have a positive effect on patient satisfaction, and 48% believed that offering CAM would attract more patients. Most physicians agreed that some CAM therapies hold promise for the treatment of symptoms or diseases, but most of them were not comfortable in counseling their patients about most CAM treatments. Prospective, randomized controlled trials were considered the level of evidence required for most physicians to consider incorporating a CAM therapy into their practice. The results of this survey provide insight into the attitudes of physicians toward CAM at an academic medical center. This study highlights the need for educational interventions and the importance of providing physicians ready access to evidence-based information regarding CAM

    Lymphangitis carcinomatosa as an unusual presentation of renal cell carcinoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Renal cell carcinoma is a common adult malignancy that can present incidentally or with a multitude of clinical symptoms and signs. Metastatic spread is frequent, occurring via haematogenous and lymphatic routes, although it does not typically present with lymphangitis carcinomatosa.</p> <p>Case presentation</p> <p>We describe a patient who presented with cough and increasing dyspnoea. Initial chest x-ray and computed tomography were consistent with lymphangitis carcinomatosa that proved secondary to underlying renal cell carcinoma.</p> <p>Conclusion</p> <p>Lymphangitis carcinomatosa occurs with many different primary tumours and can rarely be the presenting feature of renal cell carcinoma. Underlying renal cell carcinoma should be considered in the differential diagnosis of lymphangitis carcinomatosa and excluded with subsequent investigations.</p

    Investigation of potential interferences in the detection of atmospheric ROx_{x} radicals by laser-induced fluorescence under dark conditions

    Get PDF
    Direct detection of highly reactive, atmospheric hydroxyl radicals (OH) is widely accomplished by laser-induced fluorescence (LIF) instruments. The technique is also suitable for the indirect measurement of HO2 and RO2 peroxy radicals by chemical conversion to OH. It requires sampling of ambient air into a low pressure cell, where OH fluorescence is detected after excitation by 308 nm laser radiation. Although the residence time of air inside the fluorescence cell is typically only on the order of milliseconds, there is potential that additional OH is internally produced, which would artificially increase the measured OH concentration. Here, we present experimental studies investigating potential interferences in the detection of OH and peroxy radicals for the LIF instruments of Forschungszentrum Jülich for nighttime conditions. For laboratory experiments, the inlet of the instrument was overflown by excess synthetic air containing one or more reactants. In order to distinguish between OH produced by reactions upstream of the inlet and artificial signals produced inside the instrument, a chemical titration for OH was applied. Additional experiments were performed in the simulation chamber SAPHIR where simultaneous measurements by an open-path differential optical absorption spectrometer (DOAS) served as reference for OH to quantify potential artifacts in the LIF instrument. Experiments included the investigation of potential interferences related to the nitrate radical (NO3, N2O5), related to the ozonolysis of alkenes (ethene, propene, 1-butene, 2,3-dimethyl-2-butene, α-pinene, limonene, isoprene), and the laser photolysis of acetone. Experiments studying the laser photolysis of acetone yield OH signals in the fluorescence cell, which are equivalent to 0.05 × 106 cm−3 OH for a mixing ratio of 5 ppbv acetone. Under most atmospheric conditions, this interference is negligible. No significant interferences were found for atmospheric concentrations of reactants during ozonolysis experiments. Only for α-pinene, limonene, and isoprene at reactant concentrations which are orders of magnitude higher than in the atmosphere artificial OH could be detected. The value of the interference depends on the turnover rate of the ozonolysis reaction. For example, an apparent OH concentration of approximately 1 × 106 cm−3 is observed, if 5.8 ppbv limonene reacts with 600 ppbv ozone. Experiments with the nitrate radical NO3 reveal a small interference signal in the OH, HO2 and RO2 detection. Dependencies on experimental parameters point to artificial OH formation by surface reactions at the chamber walls or in molecular clusters in the gas expansion. The signal scales with the presence of NO3 giving equivalent radical concentrations of 1.1 × 105 cm−3 OH, 1 × 107 cm−3 HO2, and 1.7 × 107 cm−3 RO2 per 10 pptv NO3

    Breast manifestations of systemic diseases

    Get PDF
    Although much emphasis has been placed on the primary presentations of breast cancer, little focus has been placed on how systemic illnesses may affect the breast. In this article, we discuss systemic illnesses that can manifest in the breast. We summarize the clinical features, imaging, histopathology, and treatment recommendations for endocrine, vascular, systemic inflammatory, infectious, and hematologic diseases, as well as for the extramammary malignancies that can present in the breast. Despite the rarity of these manifestations of systemic disease, knowledge of these conditions is critical to the appropriate evaluation and treatment of patients presenting with breast symptoms
    corecore