27 research outputs found

    Classification of Inhibitors of Hepatic Organic Anion Transporting Polypeptides (OATPs): Influence of Protein Expression on Drugā€“Drug Interactions

    Get PDF
    ABSTRACT: The hepatic organic anion transporting poly-peptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drugāˆ’drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors

    Hepatic Uptake of Atorvastatin: Influence of Variability in Transporter Expression on Uptake Clearance and Drug-Drug Interactions

    No full text
    Differences in the expression and function of the organic anion transporting polypeptide (OATP) transporters contribute to interindividual variability in atorvastatin clearance. However, the importance of the bile acid transporter sodium taurocholate cotransporting polypeptide (NTCP, SLC10A1) in atorvastatin uptake clearance (CLupt) is not yet clarified. To elucidate this issue, we investigated the relative contribution of NTCP, OATP1B1, OATP1B3, and OATP2B1 to atorvastatin CLupt in 12 human liver samples. The impact of inhibition on atorvastatin CLupt was also studied, using inhibitors of different isoform specificities. Expression levels of the four transport proteins were quantified by liquid chromatography tandem mass spectrometry. These data, together with atorvastatin in vitro kinetics, were used to predict the maximal transport activity (MTA) and interindividual differences in CLupt of each transporter in vivo. Subsequently, hepatic uptake impairment on coadministration of five clinically interacting drugs was predicted using in vitro inhibitory potencies. NTCP and OATP protein expression varied 3.7- to 32-fold among the 12 sample donors. The rank order in expression was OATP1B1 > OATP1B3 approximate to NTCP approximate to OATP2B1. NTCP was found to be of minor importance in atorvastatin disposition. Instead, OATP1B1 and OATP1B3 were confirmed as the major atorvastatin uptake transporters. The average contribution to atorvastatin uptake was OATP1B1 > OATP1B3 >> OATP2B1 > NTCP, although this rank order varied among individuals. The interindividual differences in transporter expression and CLupt resulted in marked differences in drug-drug interactions due to isoform-specific inhibition. We conclude that this variation should be considered in in vitro to in vivo extrapolations

    Quantification of Hepatic Organic Anion Transport Proteins OAT2 and OAT7 in Human Liver Tissue and Primary Hepatocytes

    No full text
    Organic anion transporter (OAT) 2 and OAT7 were recently shown to be involved in the hepatic uptake of drugs; however, there is limited understanding of the population variability in the expression of these transporters in liver. There is also a need to derive relative expression-based scaling factors (REFs) that can be used to bridge in vitro functional data to the in vivo drug disposition. To this end, we quantified OAT2 and OAT7 surrogate peptide abundance in a large number of human liver tissue samples (<i>n</i> = 52), as well as several single-donor cryopreserved human hepatocyte lots (<i>n</i> = 30) by a novel, validated liquid chromatography tandem mass spectrometry (LCā€“MS/MS) method. The average surrogate peptide expression of OAT2 and OAT7 in the liver samples was 1.52 Ā± 0.57 and 4.63 Ā± 1.58 fmol/Ī¼g membrane protein, respectively. While we noted statistically significant differences (<i>p</i> < 0.05) in hepatocyte and liver tissue abundances for both OAT2 and OAT7, the differences were relatively small (1.8- and 1.5-fold difference in median values, respectively). Large interindividual variability was noted in the hepatic expression of OAT2 (16-fold in liver tissue and 23-fold in hepatocytes). OAT7, on the other hand, showed less interindividual variability (4-fold) in the livers, but high variability for the hepatocyte lots (27-fold). A significant positive correlation in OAT2 and OAT7 expression was observed, but expression levels were neither associated with age nor sex. In conclusion, our data suggest marked interindividual variability in the hepatic expression of OAT2/7, which may contribute to the pharmacokinetic variability of their substrates. Because both transporters were less abundant in hepatocytes than livers, a REF-based approach is recommended when scaling in vitro hepatocyte transport data to predict hepatic drug clearance and liver exposure of OAT2/7 substrates
    corecore