3 research outputs found
Discovery of extended VHE gamma-ray emission from the vicinity of the young massive stellar cluster Westerlund 1
11 pages, 6 figuresResults obtained in very-high-energy (VHE; E > 100 GeV) \gamma-ray observations performed with the H.E.S.S. telescope array are used to investigate particle acceleration processes in the vicinity of the young massive stellar cluster Westerlund 1 (Wd 1). Imaging of Cherenkov light from \gamma-ray induced particle cascades in the Earth's atmosphere is used to search for VHE \gamma\ rays from the region around Wd 1. Possible catalogued counterparts are searched for and discussed in terms of morphology and energetics of the H.E.S.S. source. The detection of the degree-scale extended VHE \gamma-ray source HESS J1646-458 is reported based on 45 hours of H.E.S.S. observations performed between 2004 and 2008. The VHE \gamma-ray source is centred on the nominal position of Wd 1 and detected with a total statistical significance of ~20\sigma. The emission region clearly extends beyond the H.E.S.S. point-spread function (PSF). The differential energy spectrum follows a power law in energy with an index of \Gamma=2.19 \pm 0.08_{stat} \pm 0.20_{sys} and a flux normalisation at 1 TeV of \Phi_0 = (9.0 \pm 1.4_{stat} \pm 1.8_{sys}) x 10^{-12} TeV^{-1} cm^{-2} s^{-1}. The integral flux above 0.2 TeV amounts to (5.2 \pm 0.9) x 10^{-11} cm^{-2} s^{-1}. Four objects coincident with HESS J1646-458 are discussed in the search of a counterpart, namely the magnetar CXOU J164710.2-455216, the X-ray binary 4U 1642-45, the pulsar PSR J1648-4611 and the massive stellar cluster Wd 1. In a single-source scenario, Wd 1 is favoured as site of VHE particle acceleration. Here, a hadronic parent population would be accelerated within the stellar cluster. Beside this, there is evidence for a multi-source origin, where a scenario involving PSR J1648-4611 could be viable to explain parts of the VHE \gamma-ray emission of HESS J1646-458
Multi-wavelength observations of H 2356-309
Aims. The properties of the broad-band emission from the high-frequency peaked BL Lac H 2356–309 (z = 0.165) are investigated.
Methods. Very high energy (VHE; E > 100 GeV) observations of H 2356–309 were performed with the High Energy Stereoscopic System (HESS) from 2004 through 2007. Simultaneous optical/UV and X-ray observations were made with the XMM-Newton satellite on June 12/13 and June 14/15, 2005. NRT radio observations were also contemporaneously performed in 2005. ATOM optical monitoring observations were also made in 2007.
Results. A strong VHE signal, ~13σ total, was detected by HESS after the four years HESS observations (116.8 h live time). The integral flux above 240 GeV is I(>240 GeV) = (3.06 ± 0.26stat ± 0.61syst) × 10-12 cm-2 s-1, corresponding to ~1.6% of the flux observed from the Crab Nebula. A time-averaged energy spectrum is measured from 200 GeV to 2 TeV and is characterized by a power law (photon index of Γ = 3.06 ± 0.15stat ± 0.10syst). Significant small-amplitude variations in the VHE flux from H 2356–309 are seen on time scales of months and years, but not on shorter time scales. No evidence for any variations in the VHE spectral slope are found within these data. The XMM-Newton X-ray measurements show a historically low X-ray state, characterized by a hard, broken-power-law spectrum on both nights.
Conclusions. The broad-band spectral energy distribution (SED) of the blazar can be adequately fit using a simple one-zone synchrotron self-Compton (SSC) model. In the SSC scenario, higher VHE fluxes could be expected in the future since the observed X-ray flux is at a historically low level
Simultaneous multi-wavelength campaign on PKS 2005-489 in a high state
The high-frequency peaked BL Lac object PKS 2005-489 was the target of a multi-wavelength campaign with simultaneous observations in the TeV γ-ray (H.E.S.S.), GeV γ-ray (Fermi/LAT), X-ray (RXTE, Swift), UV (Swift) and optical (ATOM, Swift) bands. This campaign was carried out during a high flux state in the synchrotron regime. The flux in the optical and X-ray bands reached the level of the historical maxima. The hard GeV spectrum observed with Fermi/LAT connects well to the very high energy (VHE, E > 100 GeV) spectrum measured with H.E.S.S