293 research outputs found

    Odelman typpilannoituksen ja niittoajan vaikutus timoteinurmen satoon

    Get PDF
    vokKirjasto Aj-

    Confluence reduction for Markov automata

    Get PDF
    Markov automata are a novel formalism for specifying systems exhibiting nondeterminism, probabilistic choices and Markovian rates. Recently, the process algebra MAPA was introduced to efficiently model such systems. As always, the state space explosion threatens the analysability of the models generated by such specifications. We therefore introduce confluence reduction for Markov automata, a powerful reduction technique to keep these models small. We define the notion of confluence directly on Markov automata, and discuss how to syntactically detect confluence on the MAPA language as well. That way, Markov automata generated by MAPA specifications can be reduced on-the-fly while preserving divergence-sensitive branching bisimulation. Three case studies demonstrate the significance of our approach, with reductions in analysis time up to an order of magnitude

    Comparing transition systems with independence and asynchronous transition systems

    Full text link

    Trace Spaces: an Efficient New Technique for State-Space Reduction

    Get PDF
    State-space reduction techniques, used primarily in model-checkers, all rely on the idea that some actions are independent, hence could be taken in any (respective) order while put in parallel, without changing the semantics. It is thus not necessary to consider all execution paths in the interleaving semantics of a concurrent program, but rather some equivalence classes. The purpose of this paper is to describe a new algorithm to compute such equivalence classes, and a representative per class, which is based on ideas originating in algebraic topology. We introduce a geometric semantics of concurrent languages, where programs are interpreted as directed topological spaces, and study its properties in order to devise an algorithm for computing dihomotopy classes of execution paths. In particular, our algorithm is able to compute a control-flow graph for concurrent programs, possibly containing loops, which is "as reduced as possible" in the sense that it generates traces modulo equivalence. A preliminary implementation was achieved, showing promising results towards efficient methods to analyze concurrent programs, with very promising results compared to partial-order reduction techniques

    A Framework to Synergize Partial Order Reduction with State Interpolation

    Full text link
    We address the problem of reasoning about interleavings in safety verification of concurrent programs. In the literature, there are two prominent techniques for pruning the search space. First, there are well-investigated trace-based methods, collectively known as "Partial Order Reduction (POR)", which operate by weakening the concept of a trace by abstracting the total order of its transitions into a partial order. Second, there is state-based interpolation where a collection of formulas can be generalized by taking into account the property to be verified. Our main contribution is a framework that synergistically combines POR with state interpolation so that the sum is more than its parts

    Approaching the Coverability Problem Continuously

    Get PDF
    The coverability problem for Petri nets plays a central role in the verification of concurrent shared-memory programs. However, its high EXPSPACE-complete complexity poses a challenge when encountered in real-world instances. In this paper, we develop a new approach to this problem which is primarily based on applying forward coverability in continuous Petri nets as a pruning criterion inside a backward coverability framework. A cornerstone of our approach is the efficient encoding of a recently developed polynomial-time algorithm for reachability in continuous Petri nets into SMT. We demonstrate the effectiveness of our approach on standard benchmarks from the literature, which shows that our approach decides significantly more instances than any existing tool and is in addition often much faster, in particular on large instances.Comment: 18 pages, 4 figure

    Compositional nonblocking verification with always enabled events and selfloop-only events

    Get PDF
    This paper proposes to improve compositional nonblocking verification through the use of always enabled and selfloop-only events. Compositional verification involves abstraction to simplify parts of a system during verification. Normally, this abstraction is based on the set of events not used in the remainder of the system, i.e., in the part of the system not being simplified. Here, it is proposed to exploit more knowledge about the system and abstract events even though they are used in the remainder of the system. Abstraction rules from previous work are generalised, and experimental results demonstrate the applicability of the resulting algorithm to verify several industrial-scale discrete event system models, while achieving better state-space reduction than before

    A robust semantics hides fewer errors

    Get PDF
    In this paper we explore how formal models are interpreted and to what degree meaning is captured in the formal semantics and to what degree it remains in the informal interpretation of the semantics. By applying a robust approach to the definition of refinement and semantics, favoured by the event-based community, to state-based theory we are able to move some aspects from the informal interpretation into the formal semantics

    A Detailed Account of The Inconsistent Labelling Problem of Stutter-Preserving Partial-Order Reduction

    Get PDF
    One of the most popular state-space reduction techniques for model checking is partial-order reduction (POR). Of the many different POR implementations, stubborn sets are a very versatile variant and have thus seen many different applications over the past 32 years. One of the early stubborn sets works shows how the basic conditions for reduction can be augmented to preserve stutter-trace equivalence, making stubborn sets suitable for model checking of linear-time properties. In this paper, we identify a flaw in the reasoning and show with a counter-example that stutter-trace equivalence is not necessarily preserved. We propose a stronger reduction condition and provide extensive new correctness proofs to ensure the issue is resolved. Furthermore, we analyse in which formalisms the problem may occur. The impact on practical implementations is limited, since they all compute a correct approximation of the theory
    • ā€¦
    corecore