2,453 research outputs found
Nano-scale analysis of titanium dioxide fingerprint-development powders
Titanium dioxide based powders are regularly used in the development of latent fingerprints on dark surfaces. For analysis of prints on adhesive tapes, the titanium dioxide is suspended in a surfactant and used in the form of a small particle reagent (SPR). Analysis of commercially available products shows varying levels of effectiveness of print development, with some powders adhering to the background as well as the print. Scanning electron microscopy (SEM) images of prints developed with different powders show a range of levels of aggregation of particles.
Analytical transmission electron microscopy (TEM) of the fingerprint powder shows TiO2 particles with a surrounding coating, tens of nanometres thick, consisting of Al and Si rich material. X ray photoelectron spectroscopy (XPS) is used to determine the composition and chemical state of the surface of the powders; with a penetration depth of approximately 10nm, this technique demonstrates differing Ti: Al: Si ratios and oxidation states between the surfaces of different powders. Levels of titanium detected with this technique demonstrate variation in the integrity of the surface coating. The thickness, integrity and composition of the Al/Si-based coating is related to the level of aggregation of TiO2 particles and efficacy of print development
Incoherent dynamics in neutron-matter interaction
Coherent and incoherent neutron-matter interaction is studied inside a
recently introduced approach to subdynamics of a macrosystem. The equation
describing the interaction is of the Lindblad type and using the Fermi
pseudopotential we show that the commutator term is an optical potential
leading to well-known relations in neutron optics. The other terms, usually
ignored in optical descriptions and linked to the dynamic structure function of
the medium, give an incoherent contribution to the dynamics, which keeps
diffuse scattering and attenuation of the coherent beam into account, thus
warranting fulfilment of the optical theorem. The relevance of this analysis to
experiments in neutron interferometry is briefly discussed.Comment: 15 pages, revtex, no figures, to appear in Phys. Rev.
Direct evidence for the magnetic ordering of Nd ions in NdFeAsO by high resolution inelastic neutron scattering
We investigated the low energy excitations in the parent compound NdFeAsO of
the Fe-pnictide superconductor in the eV range by a back scattering
neutron spectrometer. The energy scans on a powder NdFeAsO sample revealed
inelastic peaks at E = 1.600 eV at T = 0.055 K on both energy
gain and energy loss sides. The inelastic peaks move gradually towards lower
energy with increasing temperature and finally merge with the elastic peak at
about 6 K. We interpret the inelastic peaks to be due to the transition between
hyperfine-split nuclear level of the Nd and Nd isotopes with
spin . The hyperfine field is produced by the ordering of the
electronic magnetic moment of Nd at low temperature and thus the present
investigation gives direct evidence of the ordering of the Nd magnetic
sublattice of NdFeAsO at low temperature
An analytic expression for the electronic correlation term of the kinetic functional
We propose an analytic formula for the non-local Fisher information
functional, or electronic kinetic correlation term, appearing in the expression
of the kinetic density functional. Such an explicit formula is constructed on
the basis of well-founded physical arguments and a rigorous mathematical
prescription
On the Decoherence of Primordial Fluctuations During Inflation
We study the process whereby quantum cosmological perturbations become
classical within inflationary cosmology. By setting up a master-equation
formulation we show how quantum coherence for super-Hubble modes can be
destroyed by their coupling to the environment provided by sub-Hubble modes. We
identify what features the sub-Hubble environment must have in order to
decohere the longer wavelengths, and identify how the onset of decoherence (and
how long it takes) depends on the properties of the sub-Hubble physics which
forms the environment. Our results show that the decoherence process is largely
insensitive to the details of the coupling between the sub- and super-Hubble
scales. They also show how locality implies, quite generally, that the
decohered density matrix at late times is diagonal in the field representation
(as is implicitly assumed by extant calculations of inflationary density
perturbations). Our calculations also imply that decoherence can arise even for
couplings which are as weak as gravitational in strength.Comment: 31 pages, 1 figur
Obesity-induced changes in lipid mediators persist after weight loss.
BackgroundObesity induces significant changes in lipid mediators, however, the extent to which these changes persist after weight loss has not been investigated.Subjects/methodsWe fed C57BL6 mice a high-fat diet to generate obesity and then switched the diet to a lower-fat diet to induce weight loss. We performed a comprehensive metabolic profiling of lipid mediators including oxylipins, endocannabinoids, sphingosines and ceramides in key metabolic tissues (including adipose, liver, muscle and hypothalamus) and plasma.ResultsWe found that changes induced by obesity were largely reversible in most metabolic tissues but the adipose tissue retained a persistent obese metabolic signature. Prostaglandin signaling was perturbed in the obese state and lasting increases in PGD2, and downstream metabolites 15-deoxy PGJ2 and delta-12-PGJ2 were observed after weight loss. Furthermore expression of the enzyme responsible for PGD2 synthesis (hematopoietic prostaglandin D synthase, HPGDS) was increased in obese adipose tissues and remained high after weight loss. We found that inhibition of HPGDS over the course of 5 days resulted in decreased food intake in mice. Increased HPGDS expression was also observed in human adipose tissues obtained from obese compared with lean individuals. We then measured circulating levels of PGD2 in obese patients before and after weight loss and found that while elevated relative to lean subjects, levels of this metabolite did not decrease after significant weight loss.ConclusionsThese results suggest that lasting changes in lipid mediators induced by obesity, still present after weight loss, may play a role in the biological drive to regain weight
Formalism for obtaining nuclear momentum distributions by the Deep Inelastic Neutron Scattering technique
We present a new formalism to obtain momentum distributions in condensed
matter from Neutron Compton Profiles measured by the Deep Inelastic Neutron
Scattering technique. The formalism describes exactly the Neutron Compton
Profiles as an integral in the momentum variable . As a result we obtain a
Volterra equation of the first kind that relates the experimentally measured
magnitude with the momentum distributions of the nuclei in the sample. The
integration kernel is related with the incident neutron spectrum, the total
cross section of the filter analyzer and the detectors efficiency function. A
comparison of the present formalism with the customarily employed approximation
based on a convolution of the momentum distribution with a resolution function
is presented. We describe the inaccuracies that the use of this approximation
produces, and propose a new data treatment procedure based on the present
formalism.Comment: 11 pages, 8 figure
Thermocurrents and their Role in high Q Cavity Performance
Over the past years it became evident that the quality factor of a
superconducting cavity is not only determined by its surface preparation
procedure, but is also influenced by the way the cavity is cooled down.
Moreover, different data sets exists, some of them indicate that a slow
cool-down through the critical temperature is favourable while other data
states the exact opposite. Even so there where speculations and some models
about the role of thermo-currents and flux-pinning, the difference in behaviour
remained a mystery. In this paper we will for the first time present a
consistent theoretical model which we confirmed by data that describes the role
of thermo-currents, driven by temperature gradients and material transitions.
We will clearly show how they impact the quality factor of a cavity, discuss
our findings, relate it to findings at other labs and develop mitigation
strategies which especially addresses the issue of achieving high quality
factors of so-called nitrogen doped cavities in horizontal test
Neutron optical beam splitter from holographically structured nanoparticle-polymer composites
We report a breakthrough in the search for versatile diffractive elements for
cold neutrons. Nanoparticles are spatially arranged by holographical means in a
photopolymer. These grating structures show remarkably efficient diffraction of
cold neutrons up to about 50% for effective thicknesses of only 200 micron.
They open up a profound perspective for next generation neutron-optical devices
with the capability to tune or modulate the neutron diffraction efficiency.Comment: 4 pages, 2 figure
- …