1,284 research outputs found

    Adhesive organelles of Gram-negative pathogens assembled with the classical chaperone/usher machinery: structure and function from a clinical standpoint

    Get PDF
    This review summarizes current knowledge on the structure, function, assembly and biomedical applications of the superfamily of adhesive fimbrial organelles exposed on the surface of Gram-negative pathogens with the classical chaperone/usher machinery. High-resolution three-dimensional (3D) structure studies of the minifibers assembling with the FGL (having a long F1-G1 loop) and FGS (having a short F1-G1 loop) chaperones show that they exploit the same principle of donor-strand complementation for polymerization of subunits. The 3D structure of adhesive subunits bound to host-cell receptors and the final architecture of adhesive fimbrial organelles reveal two functional families of the organelles, respectively, possessing polyadhesive and monoadhesive binding. The FGL and FGS chaperone-assembled polyadhesins are encoded exclusively by the gene clusters of the gamma 3- and kappa-monophyletic groups, respectively, while gene clusters belonging to the gamma 1-, gamma 2-, gamma 4-, and pi-fimbrial clades exclusively encode FGS chaperone-assembled monoadhesins. Novel approaches are suggested for a rational design of antimicrobials inhibiting the organelle assembly or inhibiting their binding to host-cell receptors. Vaccines are currently under development based on the recombinant subunits of adhesins

    A novel Bayesian approach to quantify clinical variables and to determine their spectroscopic counterparts in 1H NMR metabonomic data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A key challenge in metabonomics is to uncover quantitative associations between multidimensional spectroscopic data and biochemical measures used for disease risk assessment and diagnostics. Here we focus on clinically relevant estimation of lipoprotein lipids by <sup>1</sup>H NMR spectroscopy of serum.</p> <p>Results</p> <p>A Bayesian methodology, with a biochemical motivation, is presented for a real <sup>1</sup>H NMR metabonomics data set of 75 serum samples. Lipoprotein lipid concentrations were independently obtained for these samples via ultracentrifugation and specific biochemical assays. The Bayesian models were constructed by Markov chain Monte Carlo (MCMC) and they showed remarkably good quantitative performance, the predictive R-values being 0.985 for the very low density lipoprotein triglycerides (VLDL-TG), 0.787 for the intermediate, 0.943 for the low, and 0.933 for the high density lipoprotein cholesterol (IDL-C, LDL-C and HDL-C, respectively). The modelling produced a kernel-based reformulation of the data, the parameters of which coincided with the well-known biochemical characteristics of the <sup>1</sup>H NMR spectra; particularly for VLDL-TG and HDL-C the Bayesian methodology was able to clearly identify the most characteristic resonances within the heavily overlapping information in the spectra. For IDL-C and LDL-C the resulting model kernels were more complex than those for VLDL-TG and HDL-C, probably reflecting the severe overlap of the IDL and LDL resonances in the <sup>1</sup>H NMR spectra.</p> <p>Conclusion</p> <p>The systematic use of Bayesian MCMC analysis is computationally demanding. Nevertheless, the combination of high-quality quantification and the biochemical rationale of the resulting models is expected to be useful in the field of metabonomics.</p

    Current and Nascent SETI Instruments in the Radio and Optical

    Get PDF
    Here we describe our ongoing efforts to develop high-performance and sensitive instrumentation for use in the search for extra-terrestrial intelligence (SETI). These efforts include our recently deployed Search for Extraterrestrial Emissions from Nearby Developed Intelligent Populations Spectrometer (SERENDIP V.v) and two instruments currently under development; the Heterogeneous Radio SETI Spectrometer (HRSS) for SETI observations in the radio spectrum and the Optical SETI Fast Photometer (OSFP) for SETI observations in the optical band. We will discuss the basic SERENDIP V.v instrument design and initial analysis methodology, along with instrument architectures and observation strategies for OSFP and HRSS. In addition, we will demonstrate how these instruments may be built using low-cost, modular components and programmed and operated by students using common languages, e.g. ANSI C

    Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis.

    Get PDF
    BACKGROUND: Circulating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities account for this relationship remains unclear. Using genetic instruments for lipoprotein lipid traits implemented through multivariable Mendelian randomisation (MR), we sought to compare their causal roles in the aetiology of CHD. METHODS AND FINDINGS: We conducted a genome-wide association study (GWAS) of circulating non-fasted lipoprotein lipid traits in the UK Biobank (UKBB) for low-density lipoprotein (LDL) cholesterol, triglycerides, and apolipoprotein B to identify lipid-associated single nucleotide polymorphisms (SNPs). Using data from CARDIoGRAMplusC4D for CHD (consisting of 60,801 cases and 123,504 controls), we performed univariable and multivariable MR analyses. Similar GWAS and MR analyses were conducted for high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I. The GWAS of lipids and apolipoproteins in the UKBB included between 393,193 and 441,016 individuals in whom the mean age was 56.9 y (range 39-73 y) and of whom 54.2% were women. The mean (standard deviation) lipid concentrations were LDL cholesterol 3.57 (0.87) mmol/L and HDL cholesterol 1.45 (0.38) mmol/L, and the median triglycerides was 1.50 (IQR = 1.11) mmol/L. The mean (standard deviation) values for apolipoproteins B and A-I were 1.03 (0.24) g/L and 1.54 (0.27) g/L, respectively. The GWAS identified multiple independent SNPs associated at P < 5 × 10-8 for LDL cholesterol (220), apolipoprotein B (n = 255), triglycerides (440), HDL cholesterol (534), and apolipoprotein A-I (440). Between 56%-93% of SNPs identified for each lipid trait had not been previously reported in large-scale GWASs. Almost half (46%) of these SNPs were associated at P < 5 × 10-8 with more than one lipid-related trait. Assessed individually using MR, LDL cholesterol (odds ratio [OR] 1.66 per 1-standard-deviation-higher trait; 95% CI: 1.49-1.86; P < 0.001), triglycerides (OR 1.34; 95% CI: 1.25-1.44; P < 0.001) and apolipoprotein B (OR 1.73; 95% CI: 1.56-1.91; P < 0.001) had effect estimates consistent with a higher risk of CHD. In multivariable MR, only apolipoprotein B (OR 1.92; 95% CI: 1.31-2.81; P < 0.001) retained a robust effect, with the estimate for LDL cholesterol (OR 0.85; 95% CI: 0.57-1.27; P = 0.44) reversing and that of triglycerides (OR 1.12; 95% CI: 1.02-1.23; P = 0.01) becoming weaker. Individual MR analyses showed a 1-standard-deviation-higher HDL cholesterol (OR 0.80; 95% CI: 0.75-0.86; P < 0.001) and apolipoprotein A-I (OR 0.83; 95% CI: 0.77-0.89; P < 0.001) to lower the risk of CHD, but these effect estimates attenuated substantially to the null on accounting for apolipoprotein B. A limitation is that, owing to the nature of lipoprotein metabolism, measures related to the composition of lipoprotein particles are highly correlated, creating a challenge in making exclusive interpretations on causation of individual components. CONCLUSIONS: These findings suggest that apolipoprotein B is the predominant trait that accounts for the aetiological relationship of lipoprotein lipids with risk of CHD

    Prompt impact of first prospective statin mega-trials on postoperative lipid management of CABG patients:A 20-year follow-up in a single hospital

    Get PDF
    Background: The long-term success of coronary artery bypass grafting (CABG) depends on secondary prevention. Vast evidence provided by the results of cholesterol mega-trials over two decades has shown that effective reduction of LDL cholesterol improves the prognosis of patients with coronary heart disease. However, the implementation of these results into the clinical practice has turned out to be challenging. We analysed how the information derived from clinical statin trials and international recommendations affected the local treatment practices of dyslipidaemia of CABG patients during a 20-year time period. Methods: The cohort includes all CABG patients (n = 953) treated in Kanta-Häme Central Hospital during the time period 1990-2009. At the postoperative visits in the cardiology outpatient clinic, each patient's statin prescription was recorded, and blood lipids were determined. Results: During 1990-1994, 12.0 % of patients were on statins and during the following 5-year time periods the proportion was 57.2, 82.2 and 96.8 %, respectively. During the 20-year observation period (1990-2009), the effective statin dose increased progressively during these 5-year periods up to 36-fold, while the mean concentration of LDL cholesterol decreased from 3.7 to 2.1 mmol/l and that of apolipoprotein B from 1.3 to 0.8 g/l. In the very last year of follow-up, the mean concentrations of LDL-C and apoB were 1.83 mmol/l and 0.78 g/l, respectively. The most prominent increase in statin use and dosage took place during 1994-1996 and 2003-2005, respectively. Conclusions: Among CABG patients the lipid-lowering efficacy of statin therapy improved dramatically since 1994. This progress was accompanied by significant and favourable changes of lipid and apolipoprotein-B values. This study shows that it is possible to effectively improve lipid treatment policy once the results of relevant trials are available, and that this may happen even before international or national guidelines have been updated.BioMed Central open acces

    A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192

    Full text link
    We report the detection of an extrasolar planet of mass ratio q ~ 2 x 10^(-4) in microlensing event MOA-2007-BLG-192. The best fit microlensing model shows both the microlensing parallax and finite source effects, and these can be combined to obtain the lens masses of M = 0.060 (+0.028 -0.021) M_sun for the primary and m = 3.3 (+4.9 -1.6) M_earth for the planet. However, the observational coverage of the planetary deviation is sparse and incomplete, and the radius of the source was estimated without the benefit of a source star color measurement. As a result, the 2-sigma limits on the mass ratio and finite source measurements are weak. Nevertheless, the microlensing parallax signal clearly favors a sub-stellar mass planetary host, and the measurement of finite source effects in the light curve supports this conclusion. Adaptive optics images taken with the Very Large Telescope (VLT) NACO instrument are consistent with a lens star that is either a brown dwarf or a star at the bottom of the main sequence. Follow-up VLT and/or Hubble Space Telescope (HST) observations will either confirm that the primary is a brown dwarf or detect the low-mass lens star and enable a precise determination of its mass. In either case, the lens star, MOA-2007-BLG-192L, is the lowest mass primary known to have a companion with a planetary mass ratio, and the planet, MOA-2007-BLG-192Lb, is probably the lowest mass exoplanet found to date, aside from the lowest mass pulsar planet.Comment: Accepted for publication in the Astrophysical Journal. Scheduled for the Sept. 1, 2008 issu

    High-throughput multivariable Mendelian randomization analysis prioritizes apolipoprotein B as key lipid risk factor for coronary artery disease

    Get PDF
    Background Genetic variants can be used to prioritize risk factors as potential therapeutic targets via Mendelian randomization (MR). An agnostic statistical framework using Bayesian model averaging (MR-BMA) can disentangle the causal role of correlated risk factors with shared genetic predictors. Here, our objective is to identify lipoprotein measures as mediators between lipid-associated genetic variants and coronary artery disease (CAD) for the purpose of detecting therapeutic targets for CAD. Methods As risk factors we consider 30 lipoprotein measures and metabolites derived from a high-throughput metabolomics study including 24 925 participants. We fit multivariable MR models of genetic associations with CAD estimated in 453 595 participants (including 113 937 cases) regressed on genetic associations with the risk factors. MR-BMA assigns to each combination of risk factors a model score quantifying how well the genetic associations with CAD are explained. Risk factors are ranked by their marginal score and selected using false-discovery rate (FDR) criteria. We perform supplementary and sensitivity analyses varying the dataset for genetic associations with CAD. Results In the main analysis, the top combination of risk factors ranked by the model score contains apolipoprotein B (ApoB) only. ApoB is also the highest ranked risk factor with respect to the marginal score (FDR <0.005). Additionally, ApoB is selected in all sensitivity analyses. No other measure of cholesterol or triglyceride is consistently selected otherwise. Conclusions Our agnostic genetic investigation prioritizes ApoB across all datasets considered, suggesting that ApoB, representing the total number of hepatic-derived lipoprotein particles, is the primary lipid determinant of CAD

    Optical photometry of the PSR B0656+14 and its neighborhood

    Full text link
    We present the results of the broad-band photometry of the nearby middle-aged radio pulsar PSR B0656+14 and its neighborhood obtained with the 6-meter telescope of the SAO RAS and with the Hubble Space Telescope. The broad-band spectral flux FνF_\nu of the pulsar decreases with increasing frequency in the near-IR range and increases with frequency in the near-UV range. The increase towards UV can be naturally interpreted as the Rayleigh-Jeans tail of the soft thermal component of the X-ray spectrum emitted from the surface of the cooling neutron star. Continuation of the power-law component, which dominates in the high-energy tail of the X-ray spectrum, to the IR-optical-UV frequencies is consistent with the observed fluxes. This suggests that the non-thermal pulsar radiation may be of the same origin in a broad frequency range from IR to hard X-rays. We also studied 4 objects detected in the pulsar's 5" neighborhood.Comment: 12 pages, 20 figures, submitted to A&A. Images are available in FITS format at http://www.ioffe.rssi.ru/astro/NSG/obs/0656-phot.htm

    Detection of human rhinoviruses by reverse transcription strand invasion based amplification method (RT-SIBA)

    Get PDF
    Background: Rhinovirus (RV), a major cause of respiratory infection in humans, imposes an enormous economic burden due to the direct and indirect costs associated with the illness. Accurate and timely diagnosis is crucial for deciding the appropriate clinical approach and minimizing unnecessary prescription of antibiotics. Diagnosis of RV is extremely challenging due to genetic and serological variability among its numerous types and their similarity to enteroviruses.Objective: We sought to develop a rapid nucleic acid test that can be used for the detection of Rhinovirus within both laboratory and near patient settings.Study design: We developed and evaluated a novel isothermal nucleic acid amplification method called Reverse Transcription Strand Invasion-Based Amplification (RT-SIBA) to rapidly detect Rhinovirus from clinical specimens.Result: The method, RT-SIBA, detected RV in clinical specimens with high analytical sensitivity (96%) and specificity (100%). The time to positive result was significantly shorter for the RV RT-SIBA assay than for a reference RV nucleic acid amplification method (RT-qPCR).Conclusion: The rapid detection time of the RV SIBA assay, as well as its compatibility with portable instruments, will facilitate prompt diagnosis of infection and thereby improve patient care.</div
    corecore