3,668 research outputs found

    Heterogeneous uptake of the C1 to C4 organic acids on a swelling clay mineral

    Get PDF
    Mineral aerosol is of interest due to its physiochemical impacts on the Earth's atmosphere. However, adsorbed organics could influence the chemical and physical properties of atmospheric mineral particles and alter their impact on the biosphere and climate. In this work, the heterogeneous uptake of a series of small organic acids on the swelling clay, Na-montmorillonite, was studied at 212 K as a function of relative humidity (RH), organic acid pressure and clay mass. A high vacuum chamber equipped with a quadrupole mass spectrometer and a transmission Fourier transform infrared spectrometer was used to detect the gas and condensed phases, respectively. Our results show that while the initial uptake efficiency was found to be independent of organic acid pressure, it increased linearly with increasing clay mass. Thus, the small masses studied allow access to the entire surface area of the clay sample with minimal effects due to surface saturation. Additionally, results from this study show that the initial uptake efficiency for butanoic (butyric) acid on the clay increases by an order of magnitude as the RH is raised from 0% to 45% RH at 212 K while the initial uptake efficiency of formic, acetic and propanoic (propionic) acids increases only slightly at higher humidities. However, the initial uptake efficiency decreases significantly in a short amount of time due to surface saturation effects. Thus, although the initial uptake efficiencies are appropriate for initial times, the fact that the uptake efficiency will decrease over time as the surface saturates should be considered in atmospheric models. Surface saturation results in sub-monolayer coverage of organic acid on montmorillonite under dry conditions and relevant organic acid pressures that increases with increasing humidity for all organic acids studied. Additionally, the presence of large organic acids may slightly enhance the water content of the clay above 45% RH. Our results indicate that heterogeneous uptake of organic acids on swelling clay minerals provides an important irreversible heterogeneous sink for these species

    New Approach to Nonlinear Dynamics of Fullerenes and Fullerites

    Get PDF
    New type of nonlinear (anharmonic) excitations -- bushes of vibrational modes -- in physical systems with point or space symmetry are discussed. All infrared active and Raman active bushes for C60 fulerene are found by means of special group-theoretical methods.Comment: LaTeX, 8 pages, to be published in Fizika Tverdogo Tela, 200

    Evidence for a direct band gap in the topological insulator Bi2Se3 from theory and experiment

    Get PDF
    Using angle-resolved photoelectron spectroscopy and ab-initio GW calculations, we unambiguously show that the widely investigated three-dimensional topological insulator Bi2Se3 has a direct band gap at the Gamma point. Experimentally, this is shown by a three-dimensional band mapping in large fractions of the Brillouin zone. Theoretically, we demonstrate that the valence band maximum is located at the Brillouin center only if many-body effects are included in the calculation. Otherwise, it is found in a high-symmetry mirror plane away from the zone center.Comment: 8 pages, 4 figure

    Conceptual design of the MHD Engineering Test Facility

    Get PDF
    The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified

    Electron Power-Law Spectra in Solar and Space Plasmas

    Full text link
    Particles are accelerated to very high, non-thermal energies in solar and space plasma environments. While energy spectra of accelerated electrons often exhibit a power law, it remains unclear how electrons are accelerated to high energies and what processes determine the power-law index δ\delta. Here, we review previous observations of the power-law index δ\delta in a variety of different plasma environments with a particular focus on sub-relativistic electrons. It appears that in regions more closely related to magnetic reconnection (such as the `above-the-looptop' solar hard X-ray source and the plasma sheet in Earth's magnetotail), the spectra are typically soft (δ\delta \gtrsim 4). This is in contrast to the typically hard spectra (δ\delta \lesssim 4) that are observed in coincidence with shocks. The difference implies that shocks are more efficient in producing a larger non-thermal fraction of electron energies when compared to magnetic reconnection. A caveat is that during active times in Earth's magnetotail, δ\delta values seem spatially uniform in the plasma sheet, while power-law distributions still exist even in quiet times. The role of magnetotail reconnection in the electron power-law formation could therefore be confounded with these background conditions. Because different regions have been studied with different instrumentations and methodologies, we point out a need for more systematic and coordinated studies of power-law distributions for a better understanding of possible scaling laws in particle acceleration as well as their universality.Comment: 67 pages, 15 figures; submitted to Space Science Reviews; comments welcom

    Gyrokinetic analysis and simulation of pedestals, to identify the culprits for energy losses using fingerprints

    Full text link
    Fusion performance in tokamaks hinges critically on the efficacy of the Edge Transport Barrier (ETB) at suppressing energy losses. The new concept of fingerprints is introduced to identify the instabilities that cause the transport losses in the ETB of many of today's experiments, from widely posited candidates. Analysis of the Gyrokinetic-Maxwell equations, and gyrokinetic simulations of experiments, find that each mode type produces characteristic ratios of transport in the various channels: density, heat and impurities. This, together with experimental observations of transport in some channel, or, of the relative size of the driving sources of channels, can identify or determine the dominant modes causing energy transport. In multiple ELMy H-mode cases that are examined, these fingerprints indicate that MHD-like modes are apparently not the dominant agent of energy transport; rather, this role is played by Micro-Tearing Modes (MTM) and Electron Temperature Gradient (ETG) modes, and in addition, possibly Ion Temperature Gradient (ITG)/Trapped Electron Modes (ITG/TEM) on JET. MHD-like modes may dominate the electron particle losses. Fluctuation frequency can also be an important means of identification, and is often closely related to the transport fingerprint. The analytical arguments unify and explain previously disparate experimental observations on multiple devices, including DIII-D, JET and ASDEX-U, and detailed simulations of two DIII-D ETBs also demonstrate and corroborate this

    Integrated Microfluidic Platform for Oral Diagnostics

    Full text link
    While many point-of-care (POC) diagnostic methods have been developed for blood-borne analytes, development of saliva-based POC diagnostics is in its infancy. We have developed a portable microfluidic device for detection of potential biomarkers of periodontal disease in saliva. The device performs rapid microfluidic chip-based immunoassays (<3–10 min) with low sample volume requirements (10 ΜL) and appreciable sensitivity (nM–pM). Our microfluidic method facilitates hands-free saliva analysis by integrating sample pretreatment (filtering, enrichment, mixing) with electrophoretic immunoassays to quickly measure analyte concentrations in minimally pretreated saliva samples. The microfluidic chip has been integrated with miniaturized electronics, optical elements, such as diode lasers, fluid-handling components, and data acquisition software to develop a portable, self-contained device. The device and methods are being tested by detecting potential biomarkers in saliva samples from patients diagnosed with periodontal disease. Our microchip-based analysis can readily be extended to detection of biomarkers of other diseases, both oral and systemic, in saliva and other oral fluids.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73594/1/annals.1384.004.pd

    Irreducible Representations of Diperiodic Groups

    Full text link
    The irreducible representations of all of the 80 diperiodic groups, being the symmetries of the systems translationally periodical in two directions, are calculated. To this end, each of these groups is factorized as the product of a generalized translational group and an axial point group. The results are presented in the form of the tables, containing the matrices of the irreducible representations of the generators of the groups. General properties and some physical applications (degeneracy and topology of the energy bands, selection rules, etc.) are discussed.Comment: 30 pages, 5 figures, 28 tables, 18 refs, LaTex2.0

    Energy Level Statistics of the U(5) and O(6) Symmetries in the Interacting Boson Model

    Get PDF
    We study the energy level statistics of the states in U(5) and O(6) dynamical symmetries of the interacting boson model and the high spin states with backbending in U(5) symmetry. In the calculations, the degeneracy resulting from the additional quantum number is eliminated manually. The calculated results indicate that the finite boson number NN effect is prominent. When NN has a value close to a realistic one, increasing the interaction strength of subgroup O(5) makes the statistics vary from Poisson-type to GOE-type and further recover to Poisson-type. However, in the case of NN \to \infty, they all tend to be Poisson-type. The fluctuation property of the energy levels with backbending in high spin states in U(5) symmetry involves a signal of shape phase transition between spherical vibration and axial rotation.Comment: 38 pages, 13 figure

    Genetic Studies of Sulfadiazine-resistant and Methionine-requiring \u3cem\u3eNeisseria\u3c/em\u3e Isolated From Clinical Material

    Get PDF
    Deoxyribonucleate (DNA) preparations were extracted from Neisseria meningitidis (four isolates from spinal fluid and blood) and N. gonorrhoeae strains, all of which were resistant to sulfadiazine upon primary isolation. These DNA preparations, together with others from in vitro mutants of N. meningitidis and N. perflava, were examined in transformation tests by using as recipient a drug-susceptible strain of N. meningitidis (Ne 15 Sul-s Met+) which was able to grow in a methionine-free defined medium. The sulfadiazine resistance typical of each donor was introduced into the uniform constitution of this recipient. Production of p-aminobenzoic acid was not significantly altered thereby. Transformants elicited by DNA from the N. meningitidis clinical isolates were resistant to at least 200 μg of sulfadiazine/ml, and did not show a requirement for methionine (Sul-r Met+). DNA from six strains of N. gonorrhoeae, which were isolated during the period of therapeutic use of sulfonamides, conveyed lower degrees of resistance and, invariably, a concurrent methionine requirement (Sul-r/Met−). The requirement of these transformants, and that of in vitro mutants selected on sulfadiazine-agar, was satisfied by methionine, but not by vitamin B12, homocysteine, cystathionine, homoserine, or cysteine. Sul-r Met+ and Sul-r/Met− loci could coexist in the same genome, but were segregated during transformation. On the other hand, the dual Sul-r/Met− properties were not separated by recombination, but were eliminated together. DNA from various Sul-r/Met− clones tested against recipients having nonidentical Sul-r/Met− mutant sites yielded Sul-s Met+ transformants. The met locus involved is genetically complex, and will be a valuable tool for studies of genetic fine structure of members of Neisseria, and of genetic homology between species
    corecore