35 research outputs found
360 deg Camera Head for Unmanned Sea Surface Vehicles
The 360 camera head consists of a set of six color cameras arranged in a circular pattern such that their overlapping fields of view give a full 360 view of the immediate surroundings. The cameras are enclosed in a watertight container along with support electronics and a power distribution system. Each camera views the world through a watertight porthole. To prevent overheating or condensation in extreme weather conditions, the watertight container is also equipped with an electrical cooling unit and a pair of internal fans for circulation
Results from the Mars Phoenix Lander Robotic Arm experiment
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95618/1/jgre2693.pd
The InSight HP3 Penetrator (Mole) on Mars: Soil Properties Derived from the Penetration Attempts and Related Activities
The NASA InSight Lander on Mars includes the Heat Flow and Physical Properties Package HP3 to measure the surface heat flow of the planet. The package uses temperature sensors that would have been brought to the target depth of 3â5 m by a small penetrator, nicknamed the mole. The mole requiring friction on its hull to balance remaining recoil from its hammer mechanism did not penetrate to the targeted depth. Instead, by precessing about a point midway along its hull, it carved a 7 cm deep and 5â6 cm wide pit and reached a depth of initially 31 cm. The root cause of the failure â as was determined through an extensive, almost two years long campaign â was a lack of friction in an unexpectedly thick cohesive duricrust. During the campaign â described in detail in this paper â the mole penetrated further aided by friction applied using the scoop at the end of the robotic Instrument Deployment Arm and by direct support by the latter. The mole tip finally reached a depth of about 37 cm, bringing the mole back-end 1â2 cm below the surface. It reversed its downward motion twice during attempts to provide friction through pressure on the regolith instead of directly with the scoop to the mole hull. The penetration record of the mole was used to infer mechanical soil parameters such as the penetration resistance of the duricrust of 0.3â0.7 MPa and a penetration resistance of a deeper layer (> 30 cm depth) of 4.9±0.4 MPa. Using the moleâs thermal sensors, thermal conductivity and diffusivity were measured. Applying cone penetration theory, the resistance of the duricrust was used to estimate a cohesion of the latter of 2â15 kPa depending on the internal friction angle of the duricrust. Pushing the scoop with its blade into the surface and chopping off a piece of duricrust provided another estimate of the cohesion of 5.8 kPa. The hammerings of the mole were recorded by the seismometer SEIS and the signals were used to derive P-wave and S-wave velocities representative of the topmost tens of cm of the regolith. Together with the density provided by a thermal conductivity and diffusivity measurement using the moleâs thermal sensors, the elastic moduli were calculated from the seismic velocities. Using empirical correlations from terrestrial
soil studies between the shear modulus and cohesion, the previous cohesion estimates were found to be consistent with the elastic moduli. The combined data were used to derive a model of the regolith that has an about 20 cm thick duricrust underneath a 1 cm thick unconsolidated layer of sand mixed with dust and above another 10 cm of unconsolidated sand. Underneath the latter, a layer more resistant to penetration and possibly containing debris from a small impact crater is inferred. The thermal conductivity increases from 14 mW/m K to 34 mW/m K through the 1 cm sand/dust layer, keeps the latter value in the duricrust and the sand layer underneath and then increases to 64 mW/m K in the sand/gravel layer below
Geology and Physical Properties Investigations by the InSight Lander
Although not the prime focus of the InSight mission, the near-surface geology and physical properties investigations provide critical information for both placing the instruments (seismometer and heat flow probe with mole) on the surface and for understanding the nature of the shallow subsurface and its effect on recorded seismic waves. Two color cameras on the lander will obtain multiple stereo images of the surface and its interaction with the spacecraft. Images will be used to identify the geologic materials and features present, quantify their areal coverage, help determine the basic geologic evolution of the area, and provide ground truth for orbital remote sensing data. A radiometer will measure the hourly temperature of the surface in two spots, which will determine the thermal inertia of the surface materials present and their particle size and/or cohesion. Continuous measurements of wind speed and direction offer a unique opportunity to correlate dust devils and high winds with eolian changes imaged at the surface and to determine the threshold friction wind stress for grain motion on Mars. During the first two weeks after landing, these investigations will support the selection of instrument placement locations that are relatively smooth, flat, free of small rocks and load bearing. Soil mechanics parameters and elastic properties of near surface materials will be determined from mole penetration and thermal conductivity measurements from the surface to 3â5 m depth, the measurement of seismic waves during mole hammering, passive monitoring of seismic waves, and experiments with the arm and scoop of the lander (indentations, scraping and trenching). These investigations will determine and test the presence and mechanical properties of the expected 3â17 m thick fragmented regolith (and underlying fractured material) built up by impact and eolian processes on top of Hesperian lava flows and determine its seismic properties for the seismic investigation of Marsâ interior
SEIS: Insightâs Seismic Experiment for Internal Structure of Mars
By the end of 2018, 42 years after the landing of the two Viking seismometers
on Mars, InSight will deploy onto Marsâ surface the SEIS (Seismic Experiment for Internal
Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes
Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These
six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz,
with possible extension to longer periods. Data will be transmitted in the form of three
continuous VBB components at 2 sample per second (sps), an estimation of the short period
energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at
10 sps. The continuous streams will be augmented by requested event data with sample
rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Vikingâs Mars
seismic monitoring by a factor of ⌠2500 at 1 Hz and ⌠200 000 at 0.1 Hz. An additional
major improvement is that, contrary to Viking, the seismometers will be deployed via a
robotic arm directly onto Marsâ surface and will be protected against temperature and wind
by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is
reasonable to infer a moment magnitude detection threshold of Mw ⌠3 at 40⊠epicentral
distance and a potential to detect several tens of quakes and about five impacts per year. In
this paper, we first describe the science goals of the experiment and the rationale used to
define its requirements. We then provide a detailed description of the hardware, from the
sensors to the deployment system and associated performance, including transfer functions
of the seismic sensors and temperature sensors. We conclude by describing the experiment
ground segment, including data processing services, outreach and education networks and
provide a description of the format to be used for future data distribution
Rover Localization Results for the FIDO Rover
This paper describes the development of a two-tier state estimation approach for NASA/JPL's FIDO Rover that utilizes wheel odometry, inertial measurement sensors, and a sun sensor to generate accurate estimates of the rover's position and attitude throughout a rover traverse. The state estimation approach makes use of a linear Kalman filter to estimate the rate sensor bias terms associated with the inertial measurement sensors and then uses these estimated rate sensor bias terms to compute the attitude of the rover during a traverse. The estimated attitude terms are then combined with the wheel odometry to determine the rover's position and attitude through an extended Kalman filter approach. Finally, the absolute heading of the vehicle is determined via a sun sensor which is then utilized to initialize the rover's heading prior to the next planning cycle for the rover's operations. This paper describes the formulation, implementation, and results associated with the two-tier state estimation approach for the FIDO rover. Keywords: rover localization, rover state estimation, Kalman filter, inertial measurement units 1