497 research outputs found

    Einstein-Cartan, Bianchi I and the Hubble Diagram

    Full text link
    We try to solve the dark matter problem in the fit between theory and the Hubble diagram of supernovae by allowing for torsion via Einstein-Cartan's gravity and for anisotropy via the axial Bianchi I metric. Otherwise we are conservative and admit only the cosmological constant and dust. The failure of our model is quantified by the relative amount of dust in our best fit: Omega_{m0}= 27 % +/- 5 % at 1 sigma level.Comment: 11 pages, 1 figur

    Maximal symmetry at the speed of light

    Full text link
    We propose a relativistic version of the cosmological principle and confront it to the Hubble diagram of supernovae and other probes.Comment: 11 pages, 1 figur

    Image Slicer Performances from a Demonstrator for the SNAP/JDEM Mission - Part I: Wavelength Accuracy

    Full text link
    A well-adapted visible and infrared spectrograph has been developed for the SNAP (SuperNova/Acceleration Probe) experiment proposed for JDEM. The instrument should have a high sensitivity to see faint supernovae but also a good redshift determination better than 0.003(1+z) and a precise spectrophotometry (2%). An instrument based on an integral field method with the powerful concept of imager slicing has been designed. A large prototyping effort has been performed in France which validates the concept. In particular a demonstrator reproducing the full optical configuration has been built and tested to prove the optical performances both in the visible and in the near infrared range. This paper is the first of two papers. The present paper focus on the wavelength measurement while the second one will present the spectrophotometric performances. We adress here the spectral accuracy expected both in the visible and in the near infrared range in such configuration and we demonstrate, in particular, that the image slicer enhances the instrumental performances in the spectral measurement precision by removing the slit effect. This work is supported in France by CNRS/INSU/IN2P3 and by the French spatial agency (CNES) and in US by the University of California.Comment: Submitted to PAS

    Testing for monotonicity in the Hubble diagram

    Get PDF
    General relativistic kinematics and the cosmological principle alone imply a monotonicity constraint in the Hubble diagram, which we confront to present-day supernova data. We use the running gradient method of statistical inference by Hall & Heckman (2000). We find no significant departure from monotonicity. The method seems well adapted and we recommend its use with future data.Comment: 5 pages, 3 figure

    On a weak Gauss law in general relativity and torsion

    Full text link
    We present an explicit example showing that the weak Gauss law of general relativity (with cosmological constant) fails in Einstein-Cartan's theory. We take this as an indication that torsion might replace dark matter.Comment: 10 pages. Version 2 corrects a factor 3 in Cartan's equations to become

    Probing Dark Energy with Supernovae : Bias from the time evolution of the equation of state

    Full text link
    Observation of thousands of type Ia supernovae should offer the most direct approach to probe the dark energy content of the universe. This will be undertaken by future large ground-based surveys followed by a space mission (SNAP/JDEM). We address the problem of extracting the cosmological parameters from the future data in a model independent approach, with minimal assumptions on the prior knowledge of some parameters. We concentrate on the comparison between a fiducial model and the fitting function and adress in particular the effect of neglecting (or not) the time evolution of the equation of state. We present a quantitative analysis of the bias which can be introduced by the fitting procedure. Such bias cannot be ignored as soon as the statistical errors from present data are drastically improved.Comment: 22 pages, 10 figures, submitted to Phys. Rev.

    Cosmological parameter extraction and biases from type Ia supernova magnitude evolution

    Full text link
    We study different one-parametric models of type Ia Supernova magnitude evolution on cosmic time scales. Constraints on cosmological and Supernova evolution parameters are obtained by combined fits on the actual data coming from Supernovae, the cosmic microwave background, and baryonic acoustic oscillations. We find that data prefer a magnitude evolution such that high-redshift Supernova are brighter than would be expected in a standard cosmos with a dark energy component. Data however are consistent with non-evolving magnitudes at the one-sigma level, except special cases. We simulate a future data scenario where SN magnitude evolution is allowed for, and neglect the possibility of such an evolution in the fit. We find the fiducial models for which the wrong model assumption of non-evolving SN magnitude is not detectable, and for which at the same time biases on the fitted cosmological parameters are introduced. Of the cosmological parameters the overall mass density has the strongest chances to be biased due to the wrong model assumption. Whereas early-epoch models with a magnitude offset ~z^2 show up to be not too dangerous when neglected in the fitting procedure, late epoch models with magnitude offset ~sqrt(z) have high chances to bias the fit results.Comment: 12 pages, 5 figures, 3 tables. Accepted for publication by A&A. Revised version: Corrected Typos, reference added to section

    Gravitational birefringence and an exotic formula for redshift

    Get PDF
    16 pages, 2 figuresInternational audienceWe compute the birefringence of light in curved Robertson-Walker spacetimes and propose an exotic formula for redshift based on the internal structure of the spinning photon. We then use the Hubble diagram of supernovae to test this formula

    Torsion, an alternative to the cosmological constant?

    Full text link
    We confront Einstein-Cartan's theory with the Hubble diagram and obtain a negative answer to the question in the title. Contrary findings in the literature seem to stem from an error in the field equations.Comment: 10 pages, 1 figure. Version 2 corrects a factor 3 in Cartan's equations to become
    • …
    corecore