458 research outputs found

    Nematic liquid crystal reorientation around multi-walled carbon nanotubes mapped via Raman microscopy

    Get PDF
    We have studied the formation of topological defects in liquid crystal (LC) matrices induced by multiwalled carbon nanotubes (MWCNTs) and external electric fields. The defects are ascribable to a distortion of the LC molecular director in proximity of the MWCNT surface. The system is analyzed macroscopically using spectroscopic variable angle ellipsometry. Concurrently, confocal micro-Raman spectroscopy is used to study the system state at the microscale. This allows to acquire a three-dimensional, spatially-resolved map of the topological defect, determining scale length variations and orientation topography of the LC molecules around the MWCNT

    Cultivares de batata para sistemas orgânicos de produção.

    Get PDF
    Informações a respeito de cultivares adaptadas ao sistema de cultivo orgânico são escassas. O objetivo deste estudo foi avaliar, sob sistema de cultivo orgânico, genótipos nacionais e estrangeiros desenvolvidos para o cultivo convencional, quanto ao potencial produtivo, em condições de campo. O experimento foi conduzido em 2008, no Pólo APTA Leste Paulista, em Monte Alegre do Sul-SP. O delineamento experimental foi em blocos ao acaso, com 18 tratamentos e quatro repetições. Cada parcela foi constituída por 80 batatas-semente, dispostas em quatro linhas de 5 m de comprimento, espaçadas de 80 cm, com 25 cm entre tubérculos. Os genótipos avaliados foram Agata, Asterix, Caesar, Cupido, Éden, Melody, Novella e Vivaldi, de origem estrangeira; e Apuã, Aracy, Catucha, IAC Aracy Ruiva, Itararé, Monte Alegre 172, IAC 6090, APTA 16.5, APTA 15.20 e APTA 21.54, nacionais. Foram avaliadas as características de produtividade total e comercial de tubérculos, massa média total e comercial de tubérculos, teor de matéria seca e severidade da pinta-preta (Alternaria solani). Os clones APTA 16.5, APTA 21.54 e IAC 6090, e as cultivares Cupido, Apuã, Itararé e Monte Alegre 172 foram os mais produtivos. ‘APTA 21.54’ superou os demais em relação a produtividade comercial (18,07 t ha-1), sendo que ‘APTA 16.5’, ‘Cupido’, ‘IAC 6090’ e ‘Itararé’ formaram o segundo grupo. As maiores massas médias de tubérculos foram apresentadas pelas cultivares Itararé e Cupido. O clone IAC 6090 e as cultivares Aracy e Aracy Ruiva foram as que apresentaram maiores teores de matéria seca, com valor médio de 22,91%. ‘APTA 16.5’, ‘Apuã’, ‘Aracy’, ‘Aracy Ruiva’, ‘Éden’, ‘Ibituaçú’ e ‘Monte Alegre 172’ apresentaram alto nível de resistência à pinta-preta. As cultivares Itararé, Apuã e Cupido são adaptadas ao cultivo orgânico, e os clones avançados APTA 16.5, APTA 21.54 e IAC 6090 apresentam potencial de cultivo no sistema orgânico

    Transcranial Magnetic Stimulation for the treatment of tinnitus: Effects on cortical excitability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low frequency repetitive transcranial magnetic stimulation (rTMS) has been proposed as an innovative treatment for chronic tinnitus. The aim of the present study was to elucidate the underlying mechanism and to evaluate the relationship between clinical outcome and changes in cortical excitability. We investigated ten patients with chronic tinnitus who participated in a sham-controlled crossover treatment trial. Magnetic-resonance-imaging and positron-emission-tomography guided 1 Hz rTMS were performed over the auditory cortex on 5 consecutive days. Active and sham treatments were separated by one week. Parameters of cortical excitability (motor thresholds, intracortical inhibition, intracortical facilitation, cortical silent period) were measured serially before and after rTMS treatment by using single- and paired-pulse transcranial magnetic stimulation. Clinical improvement was assessed with a standardized tinnitus-questionnaire.</p> <p>Results</p> <p>We noted a significant interaction between treatment response and changes in motor cortex excitability during active rTMS. Specifically, clinical improvement was associated with an increase in intracortical inhibition, intracortical facilitation and a prolongation of the cortical silent period. These results indicate that intraindividual changes in cortical excitability may serve as a correlate of response to rTMS treatment.</p> <p>Conclusion</p> <p>The observed alterations of cortical excitability suggest that low frequency rTMS may evoke long-term-depression like effects resulting in an improvement of subcortical inhibitory function.</p

    Paired Associative Stimulation of the Auditory System: A Proof-Of-Principle Study

    Get PDF
    Background Paired associative stimulation (PAS) consisting of repeated application of transcranial magnetic stimulation (TMS) pulses and contingent exteroceptive stimuli has been shown to induce neuroplastic effects in the motor and somatosensory system. The objective was to investigate whether the auditory system can be modulated by PAS. Methods Acoustic stimuli (4 kHz) were paired with TMS of the auditory cortex with intervals of either 45 ms (PAS(45 ms)) or 10 ms (PAS(10 ms)). Two-hundred paired stimuli were applied at 0.1 Hz and effects were compared with low frequency repetitive TMS (rTMS) at 0.1 Hz (200 stimuli) and 1 Hz (1000 stimuli) in eleven healthy students. Auditory cortex excitability was measured before and after the interventions by long latency auditory evoked potentials (AEPs) for the tone (4 kHz) used in the pairing, and a control tone (1 kHz) in a within subjects design. Results Amplitudes of the N1-P2 complex were reduced for the 4 kHz tone after both PAS(45 ms) and PAS(10 ms), but not after the 0.1 Hz and 1 Hz rTMS protocols with more pronounced effects for PAS(45 ms). Similar, but less pronounced effects were observed for the 1 kHz control tone. Conclusion These findings indicate that paired associative stimulation may induce tonotopically specific and also tone unspecific human auditory cortex plasticity

    Genomic Analysis of wig-1 Pathways

    Get PDF
    Background: Wig-1 is a transcription factor regulated by p53 that can interact with hnRNP A2/B1, RNA Helicase A, and dsRNAs, which plays an important role in RNA and protein stabilization. in vitro studies have shown that wig-1 binds p53 mRNA and stabilizes it by protecting it from deadenylation. Furthermore, p53 has been implicated as a causal factor in neurodegenerative diseases based in part on its selective regulatory function on gene expression, including genes which, in turn, also possess regulatory functions on gene expression. In this study we focused on the wig-1 transcription factor as a downstream p53 regulated gene and characterized the effects of wig-1 down regulation on gene expression in mouse liver and brain. Methods and Results: Antisense oligonucleotides (ASOs) were identified that specifically target mouse wig-1 mRNA and produce a dose-dependent reduction in wig-1 mRNA levels in cell culture. These wig-1 ASOs produced marked reductions in wig-1 levels in liver following intraperitoneal administration and in brain tissue following ASO administration through a single striatal bolus injection in FVB and BACHD mice. Wig-1 suppression was well tolerated and resulted in the reduction of mutant Htt protein levels in BACHD mouse brain but had no effect on normal Htt protein levels nor p53 mRNA or protein levels. Expression microarray analysis was employed to determine the effects of wig-1 suppression on genome-wide expression in mouse liver and brain. Reduction of wig-1 caused both down regulation and up regulation of several genes

    The Peripheral Binding of 14-3-3γ to Membranes Involves Isoform-Specific Histidine Residues

    Get PDF
    Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners and regulate many cellular processes. Some 14-3-3-isoforms, notably γ, have elevated affinity for membranes, which might contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to phospholipid bilayers is stimulated when 14-3-3γ is complexed with its partner, a peptide corresponding to the Ser19-phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of kosmotropic ions, which also stabilize 14-3-3γ. Electrostatic analysis of available crystal structures of γ and of the non-membrane-binding ζ-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential distribution of phosphopeptide-bound 14-3-3γ is optimal for interaction with the membrane through amphipathic helices at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3γ and located at the convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish the 14-3-3γ scaffold with the capacity for tuned shuffling from soluble to membrane-bound states.This work was supported by grants from the Norwegian Cancer Society (to ØH), Junta de Andalucía, grant CVI-02483 (to JMSR), The Research Council of Norway (grant 185181 to A.M.), the Western Norway Health Authorities (grant 911618 to A.M.) and The Kristian Gerhard Jebsen Foundation (to AM)

    Variants of OTOF and PJVK Genes in Chinese Patients with Auditory Neuropathy Spectrum Disorder

    Get PDF
    BACKGROUND: Mutations in OTOF and PJVK genes cause DFNB9 and DFNB59 types of hearing loss, respectively. The patients carrying pathogenic mutations in either of these genes may show the typical phenotype of auditory neuropathy spectrum disorder (ANSD). The aim of the present study was to identify OTOF and PJVK mutations in sporadic ANSD patients. METHODS AND FINDINGS: A total of 76 unrelated Chinese non-syndromic ANSD patients were sequenced on the gene OTOF and PJVK exon by exon. Variants were valued in 105 controls with normal hearing to verify the carrying rate. We identified one pathogenic mutation (c.1194T>A) and three novel, possibly pathogenic, variants (c.3570+2T>C, c.4023+1 G>A, and c.1102G>A) in the OTOF gene, and one novel, possibly pathogenic, variant (c.548G>A) in PJVK. Moreover, we found three novel missense mutations within the exons of OTOF. CONCLUSIONS: As we identified 4 and 1 possible pathogenic variants of the OTOF gene and the PJVK gene, respectively, we believe that screening in these genes are important in sporadic ANSD patients. The pathogenicity of these novel mutations needs further study because of their single heterozygous nature. Knowledge on the mutation spectra of these genes in Chinese would be beneficial in understanding the genetic character of this worldwide disease

    PKCδ Sensitizes Neuroblastoma Cells to L-Buthionine-Sulfoximine and Etoposide Inducing Reactive Oxygen Species Overproduction and DNA Damage

    Get PDF
    Neuroblastoma is a type of pediatric cancer. The sensitivity of neuroblastoma (NB) cancer cells to chemotherapy and radiation is inhibited by the presence of antioxidants, such as glutathione (GSH), which is crucial in counteracting the endogenous production of reactive oxygen species (ROS). We have previously demonstrated that cells depleted of GSH undergo apoptosis via oxidative stress and Protein kinase C (PKC) δ activation. In the present study, we transfected PKCδ in NB cells resistant to oxidative death induced by L-buthionine-S,R-sulfoximine (BSO), a GSH-depleting agent. Cell responses, in terms of ROS production, apoptosis and DNA damage were evaluated. Moreover, PKCδ activation was monitored by analyzing the phosphorylation status of threonine 505 residue, carrying out PKC activity assay and investigating the subcellular localization of the kinase. The cell responses obtained in BSO-resistant cells were also compared with those obtained in BSO-sensitive cells subjected to the same experimental protocol. Our results demonstrate, for the first time, that PKCδ induces DNA oxidation and ROS overproduction leading to apoptosis of BSO-resistant NB cells and potentiates the cytotoxic effects induced by BSO in sensitive cells. Moreover, PKCδ overexpression enhances the sensitivity of NB cells to etoposide, a well-characterised drug, commonly used in neuroblastoma therapy. Altogether our data provide evidence of a pro-oxidant role of PKCδ that might be exploited to design new therapeutic strategies aimed at selective killing of cancer cells and overcoming drug resistance. However, it becomes evident that a more detailed understanding of ROS-mediated signaling in cancer cells is necessary for the development of redox-modulated therapeutic approaches
    • …
    corecore