1,375 research outputs found

    Zigzag transitions and nonequilibrium pattern formation in colloidal chains

    Full text link
    Paramagnetic colloidal particles that are optically trapped in a linear array can form a zigzag pattern when an external magnetic field induces repulsive interparticle interactions. When the traps are abruptly turned off, the particles form a nonequilibrium expanding pattern with a zigzag symmetry, even when the strength of the magnetic interaction is weaker than that required to break the linear symmetry of the equilibrium state. We show that the transition to the equilibrium zigzag state is always potentially possible for purely harmonic traps. For anharmonic traps that have a finite height, the equilibrium zigzag state becomes unstable above a critical anharmonicity. A normal mode analysis of the equilibrium line configuration demonstrates that increasing the magnetic field leads to a hardening and softening of the spring constants in the longitudinal and transverse directions, respectively. The mode that first becomes unstable is the mode with the zigzag symmetry, which explains the symmetry of nonequilibrium patterns. Our analytically tractable models help to give further insight into the way that the interplay of such factors as the length of the chain, hydrodynamic interactions, thermal fluctuations affect the formation and evolution of the experimentally observed nonequilibrium patterns.Comment: 16 pages, 8 figures; to appear in the Journal of Chemical Physic

    Pattern formation in colloidal explosions

    Full text link
    We study the non-equilibrium pattern formation that emerges when magnetically repelling colloids, trapped by optical tweezers, are abruptly released, forming colloidal explosions. For multiple colloids in a single trap we observe a pattern of expanding concentric rings. For colloids individually trapped in a line, we observe explosions with a zigzag pattern that persists even when magnetic interactions are much weaker than those that break the linear symmetry in equilibrium. Theory and computer simulations quantitatively describe these phenomena both in and out of equilibrium. An analysis of the mode spectrum allows us to accurately quantify the non-harmonic nature of the optical traps. Colloidal explosions provide a new way to generate well-characterized non-equilibrium behaviour in colloidal systems.Comment: New restructured version (supplementary material goes into main text, no change of content), added journal reference and DOI information; 6 pages, 6 figures, published in Europhysics Letters (EPL

    Hydrodynamically enforced entropic trapping of Brownian particles

    Full text link
    We study the transport of Brownian particles through a corrugated channel caused by a force field containing curl-free (scalar potential) and divergence-free (vector potential) parts. We develop a generalized Fick-Jacobs approach leading to an effective one-dimensional description involving the potential of mean force. As an application, the interplay of a pressure-driven flow and an oppositely oriented constant bias is considered. We show that for certain parameters, the particle diffusion is significantly suppressed via the property of hyrodynamically enforced entropic particle trapping.Comment: 5 pages, 4 figures, in press with Physical Review Letter

    Giant enhancement of hydrodynamically enforced entropic trapping in thin channels

    Full text link
    Using our generalized Fick-Jacobs approach [Martens et al., PRL 110, 010601 (2013); Martens et al., Eur. Phys. J. Spec. Topics 222, 2453-2463 (2013)] and extensive Brownian dynamics simulations, we study particle transport through three-dimensional periodic channels of different height. Directed motion is caused by the interplay of constant bias acting along the channel axis and a pressure-driven flow. The tremendous change of the flow profile shape in channel direction with the channel height is reflected in a crucial dependence of the mean particle velocity and the effective diffusion coefficient on the channel height. In particular, we observe a giant suppression of the effective diffusivity in thin channels; four orders of magnitude compared to the bulk value.Comment: 16 pages, 8 figure

    Transport of a colloidal particle driven across a temporally oscillating optical potential energy landscape

    Get PDF
    A colloidal particle is driven across a temporally oscillating one-dimensional optical potential energy landscape and its particle motion is analysed. Different modes of dynamic mode locking are observed and are confirmed with the use of phase portraits. The effect of the oscillation frequency on the mode locked step width is addressed and the results are discussed in light of a high-frequency theory and compared to simulations. Furthermore, the influence of the coupling between the particle and the optical landscape on mode locking is probed by increasing the maximum depth of the optical landscape. Stronger coupling is seen to increase the width of mode locked steps. Finally, transport across the temporally oscillating landscape is studied by measuring the effective diffusion coefficient of a mobile particle, which is seen to be highly sensitive to the driving velocity and mode locking

    Pattern Formation Induced by Time-Dependent Advection

    Full text link
    We study pattern-forming instabilities in reaction-advection-diffusion systems. We develop an approach based on Lyapunov-Bloch exponents to figure out the impact of a spatially periodic mixing flow on the stability of a spatially homogeneous state. We deal with the flows periodic in space that may have arbitrary time dependence. We propose a discrete in time model, where reaction, advection, and diffusion act as successive operators, and show that a mixing advection can lead to a pattern-forming instability in a two-component system where only one of the species is advected. Physically, this can be explained as crossing a threshold of Turing instability due to effective increase of one of the diffusion constants

    An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems : Part II : The Sphere

    Get PDF

    Sobre cinco compuestas errĂłneamente iconografiadas en publicaciones acerca de la biodiversidad de plantas vasculares andorranas

    Get PDF
    Five Compositae taxa which are illustrated in floristic publications for Andorra are questionable records which appear to have never been collected there in the wild.Se comentan cinco taxones de compuestas que aparecen confusamente ilustrados en publicaciones florĂ­sticas de Andorra y que nunca se han recolectado en territorio andorrano
    • …
    corecore