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Abstract
Acolloidal particle is driven across a temporally oscillating one-dimensional optical potential energy
landscape and its particlemotion is analysed. Differentmodes of dynamicmode locking are observed
and are confirmedwith the use of phase portraits. The effect of the oscillation frequency on themode
locked stepwidth is addressed and the results are discussed in light of a high-frequency theory and
compared to simulations. Furthermore, the influence of the coupling between the particle and the
optical landscape onmode locking is probed by increasing themaximumdepth of the optical
landscape. Stronger coupling is seen to increase thewidth ofmode locked steps. Finally, transport
across the temporally oscillating landscape is studied bymeasuring the effective diffusion coefficient
of amobile particle, which is seen to be highly sensitive to the driving velocity andmode locking.

1. Introduction

Rough surfaces are inherent to everyday life, and on themacroscopic scale can range from tectonic plates [1] to
the soles of running shoes [2]. Despitemany surfaces seeming smooth, at themicroscopic scale every surface has
some level of roughness [3, 4], which leads to phenomena that are often not obvious as an extension from the
macroscopic world. Surface roughness, for instance, gives rise to complex ad-atomicmotion across a crystal
surface [5, 6], the creation of kinks and antikinks [7, 8], and can act as a source of templated crystal growth
[9, 10]. Further examples of rough surfaces appear in the formof sinusoidal potential energy landscapes in
superconductors and have direct applications in Josephson junctions [11], vortexmotion [12] and charge
density waves [13]. These systems are inherently hard to image [14], making studying them challenging.

Creating amodel systemof colloidal particles in an optical potential energy landscape leads to a farmore
accessible systemwith increased control. Particlemotion across randompotential energy landscapes has led to
observed subdiffusion [15–20], which can be controlledwith surface roughness [15]. Exact particlemotion has
been shown to heavily rely on the formof the landscape and can give rise to freely diffusive as well as trapped
particles [16, 21]. Further to this, the study of colloidal particle transport across periodic potential energy
surfaces has led tomany interesting observations such as subdiffusion [22, 23], superdiffusion [23–26], ballistic
motion [26, 27] and synchronisation [28–30]. Structured surfaces have also been created to achieve precise
particle sorting [31, 32] or directed transport [33, 34].

On the colloidal scale, studies of time-dependent potential energy landscapes have exhibited rich dynamics
such as acceleratedmotionwith low dispersion [35, 36] and a reduction in static friction [37] due tomode
locking. Conversely, time-dependence can also cause enhanced diffusion [26, 27, 38] and, under the correct
conditions, can lead to bidirectional particle transport [39]. Experiments carried out for large systems subject to
a time-dependent optical potential energy landscape show that collective effects, such as kinks, can affect the
dynamics [37]. Precise control ofmean drift and enhanced diffusion of colloidal particles can be achieved in
traveling potential energy landscapes [40, 41]. Single particle behaviour in temporally oscillating potentials has
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also been probed theoretically in terms of velocity and diffusion [35], though systematic single particle
experiments are lacking.

Here we drive a colloidal particle through a temporally oscillating optical potential energy landscape and
analyse trajectories to quantify the nature of transport. As in a systemwith a natural internal frequency under
external temporalmodulation, the competition between the corresponding internal and external frequencies
may cause a synchronised or dynamicallymode locked regime ofmotion [42]. Synchronisation is indeed
observed and can be directly visualised in the formof phase portraits.We study the effect of the oscillation
frequency aswell as the effect of altering the coupling between the particle and the oscillating landscape on the
synchronisation behaviour. This is achieved through changing themaximumdepth of the optical potential
energy landscape.We also characterise the efficiency of particle transport by analysing the effective diffusion
coefficient whilst altering the driving velocity and the coupling between the particle and the oscillating
landscape.

2. Theoretical background

2.1. Langevin equation
Tomodel the temporally oscillating optical potential energy landscapewe consider a line of equally spaced traps.
At small trap separations the spatial dependence of the landscape is known to be sinusoidal [43]. The laser power
is assumed to change sinusoidally with timewith a period n-1, where ν is the external frequency. The overall
evolution of the landscape is sketched infigure 1. The roughness of the potential is at its greatest at the time
period and vanishes at half the time period. Note that since laser power is non-negative, the positions of the
minima andmaxima are stationary in space and do not interchange. Thus, the spatio-temporal dependence of
the temporally oscillating optical potential energy landscape can be cast into a simple expression
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whereU0 is the amplitude of the landscape andλ its wavelength.
A particle driven through this temporally oscillating one-dimensional optical potential energy landscape(1)

experiences the force = +( ) ( )F x t F F x t, ,DC opt , where FDC is the constant driving force and
= -¶ ¶F U xopt opt . As a result, the overdampedmotion of this colloidal sphere is described by the Langevin
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where x(t) is the particle position, ζ is the friction coefficient,λ is thewavelength, k=2π/λ is thewavenumber
andω=2πν is angular frequency with ν the frequency. The critical force of the static optical landscape is given
by =F kUC 0, and ξ(t) is the irregular force accounting for thermalfluctuations. The latter ismodelled as
Gaussianwhite noise with zeromean xá ñ =( )t 0 and variance x x z dá ¢ ñ = - ¢( ) ( ) ( )t t k T t t2 B , where kBT is the
thermal energy.

Figure 1.A schematic of the temporally oscillating optical potential described by equation (1), where = -U U2min 0. The depth of the
landscape is at its greatest value 2U0 at times t=n/ν (n is an integer), disappears at t=n/(2ν) and equalsU0 at intermediate times
t=n/(4ν) and t=3n/(4ν).
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2.2. Average velocity and effective diffusion
To characterise transport of our systemwe use the average velocity and the effective diffusion coefficient. The
average velocity can be obtained as asymptotic drift velocity

=
á ñ

¥

( ) ( )v
X t

t
lim , 3

t
AV

where = -( ) ( ) ( )X t x t x 0 and the angular brackets denote the ensemble average. As in [29], we expect that the
average velocity at the dynamicmode locking steps is given by the resonance condition ln=v nAV , where n is an
integer step number. This condition follows from the requirement of frequency locking n n= nAV , meaning that
the observed (average) frequency nAV is amultiple of the external frequency ν. The effective diffusion coefficient
Deff is evaluated as [25]
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with themean squared displacement d = á ñ - á ñ( ) ( ) ( )x t X t X t2 2 2.

3. Experimentalmethods

3.1. Colloidalmodel system
Thecolloidalmodel systemused consists ofDynabeadsM-270CarboxylicAcid that have adiameterof m3 m when
dispersed in20%EtOH(aq). These areheld inaquartz glassHellmacell (internal cavity, 20 mm × 9 mm × m )200 m
and theparticles have ahighermassdensity than the surrounding solvent so sediment to thebottomof the cell [29]. The
gravitational lengthofourparticles is about m0.06 m ,which isonly2%of theirdiameter.Therefore, after
sedimentation this is effectively aquasi two-dimensional system.The system is sufficientlydilute to ensure that there is
only a single particle in thefieldof viewat any time.Thediffusioncoefficient for a freeparticle
D0=kBT/ζ≈0.04μm

2 s−1 [28].

3.2. Experimental setup
The sample is imaged andmanipulated using an optical setup described in [44] that consists of a brightfield
microscope coupled to a1064 nm infrared laser. The laser light is focused at the sample plane and controlled
using a pair of AODs. The particles are tracked in real time at 40fps. A line of optical traps is used to form a
sinusoidal optical landscape [29]with awavelength ofλ= m3.5 m . The laser power is varied between
I0=200–480 mWcorresponding to the critical velocity vC=FC/ζ=2.1–4.7 μm s−1, where µI v0 C

(as µ µF U IC 0 0).

3.3.Oscillating the depth of the optical landscape
The landscape depth is oscillated sinusoidally as described in section 2.1with a frequency of ν=0.1–1.0 Hz .
For each combination of laser power and frequency, a scan of driving velocities is carried out to obtain particle
trajectories fromwhich the average velocity is calculated. Importantly, this calculation is carried out for a time
period corresponding to an integer number of oscillations of the optical landscape depth.

3.4. Stepwidths
Thewidth of themode locked steps is analysed from the experimentallymeasured average velocity. Amode
locked step is here defined as having an average velocity equal to ln ln=  ´ ( )v n n0.1AV and containing at
least two data points. This threshold is chosen to ensure that the full width of a step is captured.

4. Results and discussion

4.1. Average velocity experiments
First, we discuss the general behaviour of the average velocity of a sphere driven through a temporally oscillating
optical landscape as a function of the driving velocity, which is summarised infigure 2, wherewe show the results
from a single experiment with I0=480 mW , and ν=0.25 Hz . Note that this laser power approximately
corresponds to a critical velocity z m= = -v F 4.6 m sC C

1. First, there is a general increase in average velocity as
the driving velocity is increased. For vDC< 0.8 μm s−1, the particle remains stationary despite having an applied
driving velocity, because the driving velocity is not high enough for the particle tomove to the subsequent
potential well within an oscillation. For vDC> 0.8 μm s−1, the particle begins tomovewith afinite velocity. The
average velocity increases until vDC=1.5 μm s−1, at which point it reaches a plateau up to vDC=2.4 μm s−1 at
vAV=λν=0.875 μm s−1. In this range of driving velocities, the particle ismode locked and every oscillation of
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the optical landscape corresponds to the particle crossing to the adjacent potential well, as displayed in
figure 2(b).

As the driving velocity is further increased, the average velocity also increases until vDC=3.0 μm s−1 where
the secondmode locked step is reachedwith vAV=2λν=1.75 μm s−1. In thismode, each time the optical
landscape oscillates, the particle traverses two opticalminima as displayed infigure 2(c). Note that in both
individual particle trajectories, shown infigures 2(b) and (c), the particle remains stationary for approximately
half of the overall oscillation time, corresponding to the optical landscape being at, or close to, itsmaximum
depth. A schematic summary of the hopping behaviour at the first and secondmode locked steps is shown in
figure 3. For higher driving velocities, vDC>3.4 μm s−1, the average velocity increases nearly linearly with
driving velocity. At these higher driving velocities, FDC?Fopt, meaning that the landscape is relatively shallow.
Effectively, the particle does not feel the landscape anymore and experiences the dominating constant force
only, therefore, vAV→vDC. The absence of higher ordermode locked steps is reminiscent of a high frequency
regime, where the external frequency ν is high compared to the internal frequency vC/λ, see appendix. In this
limit, only the zeroth andfirstmode locked step are expected to be present.

Also shown infigure 2(a) are the numerical predictions from the simulations of the Langevin equation (2),
which are in good agreementwith the experimental data and accurately reproduce both the average velocity and

Figure 2. (a)Aplot of average velocity against driving velocity for a sphere passing through an oscillating optical landscape for
l m= 3.5 m and n = 0.25 Hz. Data points show experimental results for laser power =I 480 mW0 whilst the solid line denotes
simulation results according to equation (2) for m= -v 4.6 m sC

1 andwithD0=0.04 μm2 s−1. Dashed horizontal lines show the
location of thefirst twomode locked steps. (b)vDC= 2.0 μm s−1 and (c)vDC= 3.3 μm s−1 show trajectories of points highlighted
in (a), which correspond to thefirst and secondmode locked steps. (d) and (e) showphase portraits for the trajectories shown in
(b) and (c). Points show experimental data and lines show simulated results.

Figure 3. Schematic showing themechanism formotion at thefirstmode locked step (left hand side), and the secondmode locked
step (right hand side). Bold particles show the instantaneous positionwith a shadow in place of initial particle position.
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thewidth of the variousmode locking steps. The simulations also suggest the presence of a thirdmode locking
step. In comparision to steps 0 and 1, this third step is very narrow and because it is alsomasked by thermal
fluctuations, it could not be resolved in the experiments. Further simulations performed at lower frequencies
indicate that steps 0 and 1 start to shrinkwith decreasing frequency, see also section 4.3.

4.1.1. Phase portraits
To better visualise the nature of themode locking observed infigure 2(a), phase portraits [29] are plotted from
the particle trajectories corresponding to the first and secondmode locked steps as shown infigures 2(d) and (e).
Here, removing themean drift from the particle trajectory, the phase is defined asj = - á ñ( ) [ ( ) ( ) ]t k x t x t .
The plot of dj(t)/dt againstj(t), termed the phase portrait, shows the phase trajectory. For synchronised or
mode lockedmotion, the deterministic phase trajectory is closed, corresponding to frequency locking νAV=nν
(or, equivalently, ln=v nAV , see section 2.2) and implying phase locking,j w= +( )t n t const.

The phase portrait for the firstmode locked step at vDC=2.0 μm s−1, obtained by averaging data over 10
oscillations of the optical landscape, exhibits a closed loop due to the periodicmotion of the particle, with the
particlemoving forward one trap spacing per oscillation. This can be compared to the phase portrait for a
particle driven at vDC=3.3 μm s−1, which corresponds to the secondmode locked step and is shown in
figure 2(e). Here a closed loop as a result of periodic particlemotion is again observed, but each closed loop
corresponds to the particlemoving forward two trap spacings. The experimental results infigures 2(d) and (e)
are compared to simulation results which fit well apart from at high values of both phase and phase velocity (top
right quadrant)where the precise particlemotion differs slightly. The simulation results correspond to the
numerical solution of equation (2)without thermal noise, ξ(t)=0, for the particle trajectory x(t) fromwhich
the phase portrait is obtained as described above. Note that the simulations indeed show the closed loop nature
of the phase portrait inherent tomode lockedmotion.

4.2. Laser power effects
Section 4.1 provides the general picture of dynamicmode locking at a given laser power and frequency.We now
discuss how the zeroth andfirst stepwidths changewith laser power I0 for a number of different frequencies, see
figure 4. For the sake of comparison of experimental data and simulations, we choose the critical velocity,
vC=FC/ ζ, as the control parameter, which is equivalent to changing the laser power since µv IC 0.

Figure 4(a), wherewe show experimental data (points) alongwith results of simulations (lines), presents the
dependence of zeroth stepwidthW0 on the critical velocity, vC. Sincewe consider only positive values of vDC, the
zeroth stepwidth is simply equal to the critical velocity. The stepwidthW0 generally growswith increasing laser
power. This is because increasing the laser power enhances the coupling between the oscillating optical
landscape and the particlemotion, whichmeans that they can synchronise over a greater region of driving
velocities leading to awidermode locked step. From the theoretical perspective, the stepwidth growswith an
increasing critical velocity, vC, as supported by simulations. This stepwidth increase is consistent with the
deterministic high-frequency theory, which predicts for the zeroth stepwidthW0=vC/2, see equation (A.10).
Finally, we also inspect the laser power effect on the first stepwidth,W1, which is plotted infigure 4(b). Although

Figure 4. (a)Zeroth,W0, and (b)first,W1, stepwidth as a function of the critical velocity µv IC 0 shown for a number of different
frequencies ν. The legend shown in (a) also applies to (b). Points refer to experimental data and lines correspond to simulations of
equation (2)withD0=0.04 μm2 s−1.
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the agreementwith the simulations is not as good as for the zero stepwidth,W0, the general increase ofW1 with
vC is in qualitative agreement with the high-fequency theory, which predicts thatW1=vC/2, see
equation (A.14).

4.3. Frequency effects
Wenowfix the laser power and analyse how the stepwidths of the observedmode locking steps changewith the
frequency. The comparison of the experimental data with the numerical results is presented infigure 5. The
frequency dependence of the zeroth stepwidth,W0, for three values of I0 is shown infigure 5(a), and as could
already be expected from figure 4, it is clear that the zeroth stepwidth increases with frequency. A particlemust
overcome the optical landscape to give a non-zero average velocity and thismovement occurs when the
landscape is at itsmost shallow, at n» ( )t 1 2 (see figure 1). The time period inwhich the optical landscape is
close to this ‘shallow’ state is inversely proportional to the frequency. Thismeans that at low frequencies, where
this time period is longest, the particle canmovewith least hindrance, leading to a smaller zeroth stepwidth.
Hence, the zeroth stepwidthW0→0 as ν→0. In the high frequency regime outlined in appendix, the
deterministic zeroth stepwidth =W v 20 C , see equation (A.10), which ranges from0.95 to 1.4 μm s−1 for the
laser powers used here.While the high frequency regime has not been fully reached, the observed stepwidths
appear to be plateauing towards higher frequencies suggesting that the highest frequency used here, ν=1 Hz ,
can be approximatedwell by the high frequency regime.Note, however, that the deterministic predictions
overestimate the experimentally observed values of the stepwidths, which is inherent to the absence of thermal
fluctuations in the deterministic high frequency theory, and such these predicted values should be considered as
upper bounds for the stepwidths in the limit n  ¥.

Next, the frequency dependence of the first stepwidth,W1, is shown infigure 5(b). This shows a similar
behaviour to that of the zeroth step, as the stepwidth increases with frequency. At low frequencies,many closely
spacedmode locked steps are expectedwith a separation ofλν. Thismeans that the first step is inherently small
as a large number of steps span a small range of vDC. Tending towards a higher frequency leads to an increase in
the stepwidth, and in the high-frequency limit, the stepwidth is again predicted to beW1=vC/2 according to
equation (A.14). This is observed for I0=200 mW(vC=1.9 μm s−1), and is closely approached for higher
values of vC, again suggesting that at ν=1 Hz , particlemotion can be approximatedwell by the high frequency
regime.

Experimentally it is challenging to probe stepwidths for n�2where the stepwidth is on the order of
experimental resolution. As this can, however, be probed in simulation, we nownumerically explore how the
second stepwidthW2 changes with frequency for a landscapewith vC=4.6 μm s−1, which corresponds to the
data shown infigure 2. The results of sumulations for the frequency dependence ofW2 are shown infigure 6. At
low frequencies,W2 increases with the frequency similar to the behaviour ofW0 andW1. Its growth, however,
gradually decreases untilW2 peaks at ν≈0.3 Hz . Beyond this value, the stepwidthW2 starts to reducewith
frequency. This trend at high frequencies is in linewith the deterministic high-frequency theory, which predicts
W2=0 in the high-frequency limit, n  ¥. Thus, in contrast to steps 0 and 1, the second step is hard to detect

Figure 5. (a)Zeroth,W0, and (b)firstW1, stepwidth as a function of the frequency ν for three laser powers I0. The legend shown in
(a) also applies to (b). Points refer to experimental data and lines correspond to simulations of equation (2)withD0=0.04 μm2 s−1.
The values of laser power I0 equal to 200 mW , 240 mW and 280 mW correspond to critical velocities vC equal to 1.9 μm s−1,
2.3 μm s−1, and 2.8 μm s−1, respectively.
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as its width,W2, exhibits amaximum in afinite range of frequencies and is generally smaller thanW0 andW1. As
such, it is noteworthy that at n = 0.25 Hz W2≈0.24 μm s−1 is close to itsmaximumwidthwhile not being too
much smaller thanW0 andW1 at this frequency, which explains why the second step is observable infigure 2.

4.4. Effective diffusion coefficient
Finally, we study the effective diffusion coefficient of a particlemoving across a temporally oscillating optical
landscape. The average velocity and the effective diffusion coefficient are calculated from equations (3) and (4),
respectively. Both quantities are plotted against the driving velocity vDC for two different values of laser power I0
infigure 7.

In both plots, we see that an initial rise in the average velocity corresponds to a sharp rise in the effective
diffusion coefficient as the particle begins to exhibit a non-zero velocity. Upon approaching the firstmode
locked step at vDC=1.1 μm s−1 infigure 7(a), the effective diffusion coefficient is greatly reduced. This is due to
the periodicmotion that a particle experiences when it ismode locked, leading to very low levels of effective
diffusion. The effective diffusion coefficient even drops below the diffusion coefficientmeasured for a free
particle, z m= » -D k T 0.04 m sB0

2 1, indicating that Brownianfluctuations are less significant on thismode
locked step than for a free particle. As the driving velocity is increased beyond vDC=1.6 μm s−1, the particle is
no longermode locked, and the effective diffusion coefficient rises again before slowly decreasing as the driving
velocity increases beyond vDC=1.7 μm s−1, where the optical landscape has a diminishing effect on the particle
motion.

Figure 6. Second stepwidthW2 as a function of frequency ν simulated for vC=4.6 μm s−1, which approximately corresponds to
=I 480 mW0 , andD0=0.04 μm2 s−1.

Figure 7.Average velocity (black) and effective diffusion coefficient for experiments (blue) and simulations (red) shown for a frequency of
ν=0.25 Hz and a landscapewavelengthofλ= m3.5 m and (a) =I 200 mW0 ( m= -v 1.9 m sC

1) and (b) =I 480 mW0

( m= -v 4.6 m sC
1).Grey horizontal dashed lines show the average velocity of observedmode locked stepswith the grey regions denoting

themode locked steps using the criteria fromsection 3.4. Bluedashed lines indicate thediffusion coefficient of a free particle,
m» -D 0.04 m s0

2 1.
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Infigure 7(b), which shows results for a higher vC, the effective diffusion coefficient exhibits similar
behaviour for thefirstmode locked step as that seen infigure 7(a) but there is now a secondmode locked step. At
higher velocities this secondmode locked step causes another drop in the effective diffusion coefficient between
vDC=2.9–3.4 μm s−1. Simulated data shown in red correlate well with the experimental results, though further
reductions in the effective diffusion coefficient are seen. These plots show that when a particle ismode locked, its
motion is greatly restricted and inmany cases leads to an effective diffusion coefficient that is even lower than
that of a freely diffusing particle.

To gain further insights into the behaviour of the effective diffusion coefficient, wewillmake use of the
predictions of the high-frequency theory (appendix). By comparing these predictions with those from
simulations, wewill now show that the behaviour of a particle in the temporally oscillating potential at and close
tomode locking is similar to the Brownianmotion in an effective stationary potential.

Consider Brownianmotion of a colloidal particle in an effective time-independent potential that describes
the dynamics at and close tomode-locked step n at high frequencies, see appendix:
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Here, the constantsD ¢vn andαn are different for different steps, as given by equations (A.5) and (A.6). By
adapting known results for the average velocity [43] and effective diffusion [45], close to steps n=0 and 1, we
arrive at the corresponding expressions
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( )I yxi is themodified Bessel function of thefirst kind.
As follows from expression (A.13), not only thewidth but also the location of step 1 growswith the

frequency, ν. Thus, by considering higher frequencies, we increase the separation between steps 0 and 1 and the
predictions of high-frequency theory becomemore reliable. For the comparisonwith simulationswe therefore
choose a frequency of n = 0.75 Hz. The corresponding results for the effective diffusion coefficient and the
average velocity plotted as functions of the driving velocity, vDC, are shown infigure 8.We see that at this
frequency the peaks in the effective diffusion coefficient associatedwith the end of step 0 and the onset of step 1
remain separated, unlike the single peak inDeff between steps 0 and 1 observed at n = 0.25 Hz infigure 7.Note
that the predictions of the high-frequency theory for both the average velocity (6) and effective diffusion (7) are
in excellent agreement with the results of numerical simulations. The latter is not accidental because the

Figure 8.Average velocity vAV (black solid line for simulations and red dashed line for equation (6)) and effective diffusionDeff (blue
solid line for simulations and red solid line for equation (7)) as functions of vDC plotted for l m= 3.5 m, m= -v 4.6 m sC

1,
n = 0.75 Hz andD0=0.04 μm2 s−1. The simulated data for vAV andDeff are obtained from equations (3) and (4) by averaging
trajectories from simulations of equation (2). Grey horizontal dashed line shows the average velocity ofmode locked step 1. Note that
the analytic approximations are accurate close to the critical points, but start to deviate from the numerical predictions away from
them.
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time-averaged equations (A.5) are obtained up to afinite-frequency correction of order n-( )1 . Their accuracy
goes beyond the high-frequency limit, n  ¥, which captures the terms up to order n( )0 .

Similarly tofigure 7, we see that, due to synchronisation, the diffusion of the particle is strongly suppressed at
themode locked steps, where it drops to zero exponentially fast. The particle is trapped by the landscape and the
dynamics are essentially deterministic. Close to the ends of the steps the diffusivity quickly starts to grow
outwards and significantly exceeds the value of the free diffusivity. Themaxima are achieved close to the critical
points, +vDC,0

crit, for step 0 and vDC,1
crit, for step 1. These values are slightly different from the deterministic

predictions, see equations (A.9) and (A.13), due to thermal noise. Here, the tilt of the landscape reduces the
potential barrier of the optical landscape, and the particle easily escapes from a givenwell to the subsequentwell
assisted by thermal noise, effectively increasing the diffusivity. Away from the steps, the presence of the
landscape becomes less relevant and the particle tends to exhibit free Brownianmotion as onemoves away from
the step.However, this remains only true in the case of perfectly separated steps. In our typical experimental
situation this condition is not well fulfilled and the peaks in the effective diffusion coefficient corresponding to
the neighbouring critical points start to interfere. This is clearly seen from comparing the results of the
simulations for n = 0.75 Hz plotted against the predictions of the reducedmodel with an effective potential, in
figure 8, to those infigure 7 for n = 0.25 Hz, where steps 0 and 1 aremuch closer. As a result, in the latter case
the corresponding diffusion peaks cannot be resolved and collapse into a single peak between the steps.

5. Conclusions

In this work, a colloidal sphere has been driven across a temporally oscillating one-dimensional optical potential
energy landscape. Particlemotionwas seen to exhibit dynamicmode locking corresponding to periodic particle
motion. This was visualised for the (1, 0) and (2, 0)modes with the use of phase portraits. The effect of the laser
intensity, and hence vC, on the stepwidthwas probed andwas shown to have a high correlationwith the zeroth
stepwidth, however, the first stepwidthwas shown to have aweaker dependence. The effect of the oscillation
frequency on the stepwidthwas also studied and shown to be in line with a high-frequency theory for both
experiments and simulations. Furthermore, the effective diffusion coefficient was investigated andwas seen to
be greatly reduced for a driving velocity corresponding to amode locked step. Finally, the effective diffusionwas
studied numerically and compared to deterministic predictions for the high frequency regimewhere excellent
agreementwas observed.
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Appendix.High-frequency theory

To obtain analytical insights into transport properties, here we consider the special case of high frequencies,
where the external frequency ν is high compared to the internal frequency vC/λ, inwhich the equations of
motion can be simplified close tomode locking bymeans of time averaging.

We start by neglecting thermal fluctuations in equation (2) andwriting it in terms of velocities

w= - +( ) ( )x

t
v

v
t kx

d

d 2
1 cos sin , A.1DC

C

where vDC=FDC/ζ and vC=FC/ζ. In such a system,we expectmode locked (or synchronised)motion [35]
andwill focus on the description of transport properties at and close tomode locked (Shapiro) steps. At step n,
the particle is known tomovewith the average velocity nλν [28, 29], which suggests an ansatz for the coordinate

ln= + D( ) ( ) ( )x t n t x t . A.2

Here, thefirst termon the right hand side is the averaged solutiononmode locked stepn and the second term,Δx(t),
denotes thedeviation from itwhichbecomes increasingly non-zero aswemove away from the step.Applying this
ansatz to equation (A.1), expanding w + D( )n t k xsin , and taking account of trigonometric identities

w w w w= + + -( ) ( ) [( ) ] [( ) ]n t t n t n t2 sin cos sin 1 sin 1 and w w w= + +( ) ( ) [( ) ]n t t n t2 cos cos cos 1
w-[( ) ]n tcos 1 , for thedynamics close to stepnweobtain an equation
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w w
D

=D - + + D

=D - D + D

( ) ( ) ( )

[ ( ) ( ) ( ) ( )] ( )

x

t
v

v
t n t k x

v
v

k x S t k x C t

d

d 2
1 cos sin

4
cos sin A.3

n

n n n

C

C

with lnD = -v v nn DC and functions w w w= + + + -( ) [( ) ] ( ) [( ) ]S t n t n t n tsin 1 2 sin sin 1n and
w w w= + + + -( ) [( ) ] ( ) [( ) ]C t n t n t n tcos 1 2 cos cos 1n . Up to this point, we havemade no approximations.

Tomake analytical progress, we nowproceed to time averaging of this equation.We assume that the
dynamics can be decomposed into slow (averaged) and fast (oscillatory)motion, and thereforeD = +( ) ˜x t q q ,
where q denotesΔx(t) averaged over the time period of oscillation and q̃ contains explicit dependence on the
oscillatory timescaleωt andmultiples of it. Hereafter, the overbar is used to denote the time averaging. Similarly,
we decompose = +¯ ˜S S S and = +¯ ˜C C C . Because generally q̃ 0 as w  ¥, for high but finite
frequencies it is natural to assume that ∣ ˜∣ ∣ ∣q q . Therefore, we can approximate

D » -( ) ˜k x kq kq kqcos cos sin and D » +( ) ˜k x kq kq kqsin sin cos in equation (A.3). Further, finding a closed
solution for the oscillatory part q̃ allows us to obtain a time averaged equation for the slowly evolving q.

First, keeping the leading oscillatory terms only in equation (A.3), we arrive at the equation that governs the
fast dynamics, = - +˜ ( )[ ˜ ( ) ˜ ( ) ]q t v S t kq C t kqd d 4 cos sinn nC . Taking into account that the slow evolution in
q (t) is indepenent of fast oscillatory dynamics, we integrate the above equation to obtain the explicit solution
for ˜( )q t

w
= -˜( ) [˜ ( ) ˜ ( ) ] ( )q t

v
c t kq s t kq

4
cos sin , A.4n n

C

where ˜ ( )s tn and ˜ ( )c tn are determined by oscillatory parts of the expressions w= + + +-( ) ( ) [( ) ]s t n n t1 sin 1n
1

w w+ - -- -( ) ( ) [( ) ]n n t n n t2 sin 1 sin 11 1 and w w= + + + +- -( ) ( ) [( ) ] ( )c t n n t n n t1 cos 1 2 cosn
1 1

w- --( ) [( ) ]n n t1 cos 11 . A careful consideration of the special cases for n=0,m1, at which the terms
µ - -( )n n, 11 1become formally singular, shows their actual absence in the corresponding definitions of sn(t)
and cn(t). Therefore, our general analysis for arbitrary n remains valid under the convention that every singular
term is omitted. Note also that as follows from equation (A.4), the oscillatory solution decays with the growth in
frequency as wµ -˜( )q t 1, in accordance with the accepted assumption that q̃ 0 as w  ¥.

Next, we proceed to performing the time averaging of equation (A.3). Because the time averaging ofmixed
trigonometric terms is trivial, º˜ ( ) ˜ ( )c t S t 0n n , º˜ ( ) ˜ ( )s t C t 0n n , the slow timescale dynamics is governed by the
equation

w
= D - + -( ¯ ¯ )q

t
v

v
S kq C kq

v k
Q

d

d 4
cos sin

16
,n n n

C C
2

with = +˜ ( ) ˜ ( ) ˜ ( ) ˜ ( )Q c t C t kq s t S t kqcos sinn n n n
2 2 evaluated by noticing that ˜ ( ) ˜ ( )c t C tn n =˜ ( ) ˜ ( )s t S tn n =

w w w+ + + + - -- - -( ) [( ) ] ( ) ( ) [( ) ]n n t n n t n n t1 sin 1 4 sin 1 sin 11 2 1 2 1 2 = + +-[( )n 1 1

+ -- -( ) ]n n4 1 21 1 . As directly follows from the definitions of Sn(t) andCn(t), we have =S̄ 0n for all n�0,
and =C̄ 20 , =C̄ 11 and =C̄ 0n for all n�2.

As a result, the slow timescale evolution obeys a simple equation

a ln
d
ln

= D ¢ - D ¢ = - - ( )q

t
v v kq v v n

vd

d
sin , A.5n n n

n
C DC

C
2

with the coefficients

 
a d=

=
= =

=
=

-
-

⎧
⎨⎪
⎩⎪

⎧
⎨⎪

⎩⎪
( )

( )

n

n
n

n
n

n

1 2 0,

1 4 1,
0, 2,

0 0,
9 64 1,

. 2
. A.6n n

n

n n

3 2

16 1

2

2

The time averaged equations allow a simple interpretation for transport properties.We note that the correction
d ln( )vn C

2 , which describes a small shift of themode-locked steps, vanishes in the high-frequency limit n  ¥
corresponding to approximation =˜( )q t 0 in equation (A.4). Requiring smallness of this correction in
comparisonwith the termλν specifies the validity condition of the high-frequency approximation. For example,
for themost interesting case n=1wefind the criteriumof high frequency to be n l ( )v3 8C .We now
consider the transport properties inmore detais.

A.1. Zerothmode locked step
For n=0, we haveD =v v0 DC, x(t)=q(t), and equation (A.5) reduces to

= - ( )x

t
v

v
kx

d

d 2
sin , A.7DC

C
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which leads to the average velocity close to the zerothmode locked summarised as [43]

 
=

- >

⎪

⎪

⎧
⎨
⎩ ( )

( )( )v
v v

v v v v

0, 0 2

2 , 2.
A.8AV

0 DC C

DC
2

C
2

DC C

The critical velocity corresponds to the situationwhen the two branches of equation (A.8) coincide. This
happenswhen the square root vanishes, andwe obtain

=  ( )v
v

2
. A.9DC,0

crit, C

Sincewe consider only positive values of vDC, thewidth of step 0 corresponds to

= =+ ( )W v
v

2
. A.100 DC,0

crit, C

A.2. Firstmode locked step
For n=1, we have ln lnD ¢ = - - ( )v v v9 641 DC C

2 , the original coordinate ln= +( ) ( )x t q t , and
equation (A.5) yields

= D ¢ - ( )q

t
v

v
kx

d

d 4
sin . A.111

C

Similarly to the case, n=0, this gives rise to an average velocity at, or close to, themode locked stepwhere n=1

ln

ln
=

D ¢

 D ¢ - D ¢ >

⎪

⎪

⎧
⎨
⎩

∣ ∣

( ) ( ) ∣ ∣
( )( )v

v v

v v v v

, 4

4 , 4.
A.12AV

1 1 C

1
2

C
2

1 C

Note that depending on the frequency ν, the quantityD ¢v1 can take both positive and negative values, while vDC
remains non-negative. The critical velocities are determined by the vanishing square root, which yields

ln
ln

= +  ( )v
v v9

64 4
. A.13DC,1

crit, C
2

C

Thus, thefirstmode locked step is centered at the value ln ln+ ( )v9 64C
2 and has thewidth

= - =+ - ( )W v v
v

2
. A.141 DC,1

crit,
DC,1
crit, C

A.3.Higher ordermode locked steps
For the case of n�2, the time average of equation (A.5) is vastly simplified and only thefirst constant term
remains,

ln
ln

= D ¢ = - -
-
-

( )
( )

( ) ( )q

t
v v n

n v

n n
n

d

d

3 2

16 1
2 . A.15n DC

2
C
2

2

Thismeans that the optical potential is effectively vanishing, leading to the trivial result for the average velocity


d
ln

= - = ( )( )v v
v

W n, 0, 2. A.16n n
nAV DC

C
2

Hence, we find a stepwidth of 0 for all n�2. This is very different towhat is seen for amode locked systemwith
an oscillating driving force [28, 29]wheremode locking steps exits for all integer n, as has been experimentally
observed for up to n=6.
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