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Abstract

A colloidal particle is driven across a temporally oscillating one-dimensional optical potential energy
landscape and its particle motion is analysed. Different modes of dynamic mode locking are observed
and are confirmed with the use of phase portraits. The effect of the oscillation frequency on the mode
locked step width is addressed and the results are discussed in light of a high-frequency theory and
compared to simulations. Furthermore, the influence of the coupling between the particle and the
optical landscape on mode locking is probed by increasing the maximum depth of the optical
landscape. Stronger coupling is seen to increase the width of mode locked steps. Finally, transport
across the temporally oscillating landscape is studied by measuring the effective diffusion coefficient
of amobile particle, which is seen to be highly sensitive to the driving velocity and mode locking.

1. Introduction

Rough surfaces are inherent to everyday life, and on the macroscopic scale can range from tectonic plates [1] to
the soles of running shoes [2]. Despite many surfaces seeming smooth, at the microscopic scale every surface has
some level of roughness [3, 4], which leads to phenomena that are often not obvious as an extension from the
macroscopic world. Surface roughness, for instance, gives rise to complex ad-atomic motion across a crystal
surface 5, 6], the creation of kinks and antikinks [7, 8], and can act as a source of templated crystal growth

[9, 10]. Further examples of rough surfaces appear in the form of sinusoidal potential energy landscapes in
superconductors and have direct applications in Josephson junctions [11], vortex motion [12] and charge
density waves [13]. These systems are inherently hard to image [14], making studying them challenging.

Creating a model system of colloidal particles in an optical potential energy landscape leads to a far more
accessible system with increased control. Particle motion across random potential energy landscapes has led to
observed subdiffusion [15-20], which can be controlled with surface roughness [15]. Exact particle motion has
been shown to heavily rely on the form of the landscape and can give rise to freely diffusive as well as trapped
particles [16, 21]. Further to this, the study of colloidal particle transport across periodic potential energy
surfaces has led to many interesting observations such as subdiffusion [22, 23], superdiffusion [23-26], ballistic
motion [26, 27] and synchronisation [28—30]. Structured surfaces have also been created to achieve precise
particle sorting [31, 32] or directed transport [33, 34].

On the colloidal scale, studies of time-dependent potential energy landscapes have exhibited rich dynamics
such as accelerated motion with low dispersion [35, 36] and a reduction in static friction [37] due to mode
locking. Conversely, time-dependence can also cause enhanced diffusion [26, 27, 38] and, under the correct
conditions, can lead to bidirectional particle transport [39]. Experiments carried out for large systems subject to
atime-dependent optical potential energy landscape show that collective effects, such as kinks, can affect the
dynamics [37]. Precise control of mean drift and enhanced diffusion of colloidal particles can be achieved in
traveling potential energy landscapes [40, 41]. Single particle behaviour in temporally oscillating potentials has
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Figure 1. A schematic of the temporally oscillating optical potential described by equation (1), where U, = —2Up. The depth of the
landscape is at its greatest value 2Uj at times t = n/v (nis an integer), disappears at t = n/(2v) and equals U, at intermediate times
t = n/(4v)andt = 3n/(4v).

also been probed theoretically in terms of velocity and diffusion [35], though systematic single particle
experiments are lacking.

Here we drive a colloidal particle through a temporally oscillating optical potential energy landscape and
analyse trajectories to quantify the nature of transport. As in a system with a natural internal frequency under
external temporal modulation, the competition between the corresponding internal and external frequencies
may cause a synchronised or dynamically mode locked regime of motion [42]. Synchronisation is indeed
observed and can be directly visualised in the form of phase portraits. We study the effect of the oscillation
frequency as well as the effect of altering the coupling between the particle and the oscillating landscape on the
synchronisation behaviour. This is achieved through changing the maximum depth of the optical potential
energy landscape. We also characterise the efficiency of particle transport by analysing the effective diffusion
coefficient whilst altering the driving velocity and the coupling between the particle and the oscillating
landscape.

2. Theoretical background

2.1. Langevin equation

To model the temporally oscillating optical potential energy landscape we consider a line of equally spaced traps.
At small trap separations the spatial dependence of the landscape is known to be sinusoidal [43]. The laser power
is assumed to change sinusoidally with time with a period v !, where v/ is the external frequency. The overall
evolution of the landscape is sketched in figure 1. The roughness of the potential is at its greatest at the time
period and vanishes at half the time period. Note that since laser power is non-negative, the positions of the
minima and maxima are stationary in space and do not interchange. Thus, the spatio-temporal dependence of
the temporally oscillating optical potential energy landscape can be cast into a simple expression

Uspt (%, 1) = —2U, cos? (mt) cos? (%x)’ (1)

where Uy is the amplitude of the landscape and A its wavelength.
A particle driven through this temporally oscillating one-dimensional optical potential energy landscape (1)
experiences the force F(x, t) = Fpc + Fpt(x, t), where Fp is the constant driving force and
Fypt = —0OUp /Ox. Asaresult, the overdamped motion of this colloidal sphere is described by the Langevin
equation
dx

CE = Fpc — %(1 + coswt) sinkx + £(t), )

where x(7) is the particle position, (is the friction coefficient, A is the wavelength, k = 27/ A is the wavenumber
and w = 27vis angular frequency with v the frequency. The critical force of the static optical landscape is given
by Fc = kU, and £(¢) is the irregular force accounting for thermal fluctuations. The latter is modelled as
Gaussian white noise with zero mean (£ (¢)) = 0 and variance (£ (£)£ (")) = 2¢kg TS (+ — '), where kpT'is the
thermal energy.
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2.2. Average velocity and effective diffusion
To characterise transport of our system we use the average velocity and the effective diffusion coefficient. The
average velocity can be obtained as asymptotic drift velocity

vy = lim <Xti)>, (3)

where X (¢) = x(¢#) — x(0) and the angular brackets denote the ensemble average. As in [29], we expect that the
average velocity at the dynamic mode locking steps is given by the resonance condition vyy = nAv, where nisan
integer step number. This condition follows from the requirement of frequency locking v4y = #1/, meaning that
the observed (average) frequency v,y is a multiple of the external frequency v. The effective diffusion coefficient
D, is evaluated as [25]

2
Deff = lim Ox (t)
t—oo 2t

with the mean squared displacement §x2(¢) = (X%(t)) — (X (1))%

4

3. Experimental methods

3.1. Colloidal model system

The colloidal model system used consists of Dynabeads M-270 Carboxylic Acid that have a diameter of 3 ;xm when
dispersed in 20% EtOH(aq). These are held in a quartz glass Hellma cell (internal cavity, 20 mm x 9 mm x 200 pm)
and the particles have a higher mass density than the surrounding solvent so sediment to the bottom of the cell [29]. The
gravitational length of our particles is about 0.06 pm , which is only 2% of their diameter. Therefore, after
sedimentation this is effectively a quasi two-dimensional system. The system is sufficiently dilute to ensure that there is
only a single particle in the field of view at any time. The diffusion coefficient for a free particle

Do = kgT/C ~ 0.04 im* s~ [28].

3.2. Experimental setup

The sample is imaged and manipulated using an optical setup described in [44] that consists of a brightfield
microscope coupled to a 1064 nm infrared laser. The laser light is focused at the sample plane and controlled
using a pair of AODs. The particles are tracked in real time at 40 fps. A line of optical traps is used to form a
sinusoidal optical landscape [29] with a wavelength of A = 3.5 pm . The laser power is varied between

Iy = 200-480 mW corresponding to the critical velocity ve = Fo/¢ = 2.1-4.7 pm s~ ', where Iy o v

(as FC 0.8 U() X I())

3.3. Oscillating the depth of the optical landscape

Thelandscape depth is oscillated sinusoidally as described in section 2.1 with a frequency of v = 0.1-1.0 Hz .
For each combination of laser power and frequency, a scan of driving velocities is carried out to obtain particle
trajectories from which the average velocity is calculated. Importantly, this calculation is carried out for a time
period corresponding to an integer number of oscillations of the optical landscape depth.

3.4. Step widths

The width of the mode locked steps is analysed from the experimentally measured average velocity. A mode
locked step is here defined as having an average velocity equal to v,y = nAv £ 0.1 X (nAv)and containing at
least two data points. This threshold is chosen to ensure that the full width of a step is captured.

4. Results and discussion

4.1. Average velocity experiments

First, we discuss the general behaviour of the average velocity of a sphere driven through a temporally oscillating
optical landscape as a function of the driving velocity, which is summarised in figure 2, where we show the results
from a single experiment with I, = 480 mW ,and v = 0.25 Hz . Note that this laser power approximately
corresponds to a critical velocity vc = Fc /¢ = 4.6 um s~ L. First, there is a general increase in average velocity as
the driving velocity is increased. For vpe < 0.8 um s~ ', the particle remains stationary despite having an applied
driving velocity, because the driving velocity is not high enough for the particle to move to the subsequent
potential well within an oscillation. For vpc > 0.8 um s, the particle begins to move with a finite velocity. The
average velocity increases until vpc = 1.5 um s~ ', at which point it reaches a plateau up to vpc = 2.4 um's ™' at
vav = A = 0.875 um s~ ', In this range of driving velocities, the particle is mode locked and every oscillation of

3
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Figure 2. (a) A plot of average velocity against driving velocity for a sphere passing through an oscillating optical landscape for

A = 3.5 pmand v = 0.25 Hz. Data points show experimental results for laser power I = 480 mW whilst the solid line denotes
simulation results according to equation (2) for vc = 4.6 um s~! and with Dy = 0.04 um” s~ '. Dashed horizontal lines show the
location of the first two mode locked steps. (b) vpc = 2.0 um s~ 'and (c) vpc = 3.3 pm s~ ' show trajectories of points highlighted
in (a), which correspond to the first and second mode locked steps. (d) and (e) show phase portraits for the trajectories shown in

(b) and (c). Points show experimental data and lines show simulated results.

(1,0) mode (2,0) mode

U(x)
U(x)

W
<|—
U(x)
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U(x)
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Figure 3. Schematic showing the mechanism for motion at the first mode locked step (left hand side), and the second mode locked
step (right hand side). Bold particles show the instantaneous position with a shadow in place of initial particle position.

the optical landscape corresponds to the particle crossing to the adjacent potential well, as displayed in
figure 2(b).

As the driving velocity is further increased, the average velocity also increases until vp = 3.0 ym s~ ' where
the second mode locked step is reached with vay = 2Av = 1.75 um's~ '. In this mode, each time the optical
landscape oscillates, the particle traverses two optical minima as displayed in figure 2(c). Note that in both
individual particle trajectories, shown in figures 2(b) and (c), the particle remains stationary for approximately
half of the overall oscillation time, corresponding to the optical landscape being at, or close to, its maximum
depth. A schematic summary of the hopping behaviour at the first and second mode locked steps is shown in
figure 3. For higher driving velocities, vpc > 3.4 um s, the average velocity increases nearly linearly with
driving velocity. At these higher driving velocities, Fpc > F,pr, meaning that the landscape is relatively shallow.
Effectively, the particle does not feel the landscape any more and experiences the dominating constant force
only, therefore, voy — vpc. The absence of higher order mode locked steps is reminiscent of a high frequency
regime, where the external frequency v is high compared to the internal frequency v/ A, see appendix. In this
limit, only the zeroth and first mode locked step are expected to be present.

Also shown in figure 2(a) are the numerical predictions from the simulations of the Langevin equation (2),
which are in good agreement with the experimental data and accurately reproduce both the average velocity and

4
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Figure 4. (a) Zeroth, W), and (b) first, W), step width as a function of the critical velocity v o< Iy shown for a number of different
frequencies v. The legend shown in (a) also applies to (b). Points refer to experimental data and lines correspond to simulations of
equation (2) with Dy = 0.04 ym? s .

the width of the various mode locking steps. The simulations also suggest the presence of a third mode locking
step. In comparision to steps 0 and 1, this third step is very narrow and because it is also masked by thermal
fluctuations, it could not be resolved in the experiments. Further simulations performed at lower frequencies
indicate that steps 0 and 1 start to shrink with decreasing frequency, see also section 4.3.

4.1.1. Phase portraits

To better visualise the nature of the mode locking observed in figure 2(a), phase portraits [29] are plotted from
the particle trajectories corresponding to the first and second mode locked steps as shown in figures 2(d) and (e).
Here, removing the mean drift from the particle trajectory, the phase is defined as ¢ (t) = k[x(¢) — (x(¥))].
The plot of d(#)/dt against ¢(t), termed the phase portrait, shows the phase trajectory. For synchronised or
mode locked motion, the deterministic phase trajectory is closed, corresponding to frequencylocking vy = nv
(or, equivalently, vyy = nAv, see section 2.2) and implying phase locking, ¢ () = nwt + const.

The phase portrait for the first mode locked step at vpc = 2.0 um s~ ', obtained by averaging data over 10
oscillations of the optical landscape, exhibits a closed loop due to the periodic motion of the particle, with the
particle moving forward one trap spacing per oscillation. This can be compared to the phase portrait for a
particle driven at vpc = 3.3 um's™ ', which corresponds to the second mode locked step and is shown in
figure 2(e). Here a closed loop as a result of periodic particle motion is again observed, but each closed loop
corresponds to the particle moving forward two trap spacings. The experimental results in figures 2(d) and (e)
are compared to simulation results which fit well apart from at high values of both phase and phase velocity (top
right quadrant) where the precise particle motion differs slightly. The simulation results correspond to the
numerical solution of equation (2) without thermal noise, £(f) = 0, for the particle trajectory x(¢) from which
the phase portrait is obtained as described above. Note that the simulations indeed show the closed loop nature
of the phase portrait inherent to mode locked motion.

4.2. Laser power effects

Section 4.1 provides the general picture of dynamic mode locking at a given laser power and frequency. We now
discuss how the zeroth and first step widths change with laser power I, for a number of different frequencies, see
figure 4. For the sake of comparison of experimental data and simulations, we choose the critical velocity,

vc = Fc/ ¢, asthe control parameter, which is equivalent to changing the laser power since v¢ o< I.

Figure 4(a), where we show experimental data (points) along with results of simulations (lines), presents the
dependence of zeroth step width W, on the critical velocity, vc. Since we consider only positive values of vp, the
zeroth step width is simply equal to the critical velocity. The step width W, generally grows with increasing laser
power. This is because increasing the laser power enhances the coupling between the oscillating optical
landscape and the particle motion, which means that they can synchronise over a greater region of driving
velocities leading to a wider mode locked step. From the theoretical perspective, the step width grows with an
increasing critical velocity, vc, as supported by simulations. This step width increase is consistent with the
deterministic high-frequency theory, which predicts for the zeroth step width Wy, = v/2, see equation (A.10).
Finally, we also inspect the laser power effect on the first step width, W3, which is plotted in figure 4(b). Although
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Figure 5. (a) Zeroth, W), and (b) first W, step width as a function of the frequency v for three laser powers I,. The legend shown in
(a) also applies to (b). Points refer to experimental data and lines correspond to simulations of equation (2) with Dy = 0.04 um?s™ ..
The values of laser power Iy equal to 200 mW, 240 mW and 280 mW correspond to critical velocities v equal to 1.9 um s~ ',

2.3 ums~',and 2.8 pm s, respectively.

the agreement with the simulations is not as good as for the zero step width, Wy, the general increase of W, with
vc is in qualitative agreement with the high-fequency theory, which predicts that W, = v¢/2, see
equation (A.14).

4.3. Frequency effects

We now fix the laser power and analyse how the step widths of the observed mode locking steps change with the
frequency. The comparison of the experimental data with the numerical results is presented in figure 5. The
frequency dependence of the zeroth step width, Wy, for three values of I, is shown in figure 5(a), and as could
already be expected from figure 4, it is clear that the zeroth step width increases with frequency. A particle must
overcome the optical landscape to give a non-zero average velocity and this movement occurs when the
landscape is at its most shallow, at t & 1/(2v) (see figure 1). The time period in which the optical landscape is
close to this ‘shallow’ state is inversely proportional to the frequency. This means that at low frequencies, where
this time period is longest, the particle can move with least hindrance, leading to a smaller zeroth step width.
Hence, the zeroth step width Wy — 0asv — 0. In the high frequency regime outlined in appendix, the
deterministic zeroth step width W, = v /2, see equation (A.10), which ranges from 0.95to 1.4 um s~ for the
laser powers used here. While the high frequency regime has not been fully reached, the observed step widths
appear to be plateauing towards higher frequencies suggesting that the highest frequency used here, v = 1 Hz,
can be approximated well by the high frequency regime. Note, however, that the deterministic predictions
overestimate the experimentally observed values of the step widths, which is inherent to the absence of thermal
fluctuations in the deterministic high frequency theory, and such these predicted values should be considered as
upper bounds for the step widths in the limit v — oo.

Next, the frequency dependence of the first step width, W1, is shown in figure 5(b). This shows a similar
behaviour to that of the zeroth step, as the step width increases with frequency. Atlow frequencies, many closely
spaced mode locked steps are expected with a separation of Av. This means that the first step is inherently small
as alarge number of steps span a small range of vpc. Tending towards a higher frequency leads to an increase in
the step width, and in the high-frequency limit, the step width is again predicted to be W, = v/2 according to
equation (A.14). This is observed for [, = 200 mW (vc = 1.9 um s~ "), and is closely approached for higher
values of v, again suggesting thatat v = 1 Hz , particle motion can be approximated well by the high frequency
regime.

Experimentally it is challenging to probe step widths for n > 2 where the step width is on the order of
experimental resolution. As this can, however, be probed in simulation, we now numerically explore how the
second step width W, changes with frequency for a landscape with vc = 4.6 um s~ ', which corresponds to the
data shown in figure 2. The results of sumulations for the frequency dependence of W, are shown in figure 6. At
low frequencies, W, increases with the frequency similar to the behaviour of W and W;. Its growth, however,
gradually decreases until W, peaks at v ~ 0.3 Hz . Beyond this value, the step width W, starts to reduce with
frequency. This trend at high frequencies is in line with the deterministic high-frequency theory, which predicts
W, = 0Ointhe high-frequencylimit, ¥ — 00. Thus, in contrast to steps 0 and 1, the second step is hard to detect

6
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Figure 6. Second step width W, as a function of frequency v simulated for vc = 4.6 um s~ ', which approximately corresponds to
I = 480 mW,and Dy = 0.04 pm?s ™.
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Figure 7. Average velocity (black) and effective diffusion coefficient for experiments (blue) and simulations (red) shown for a frequency of
v = 0.25 Hz and alandscape wavelength of A = 3.5 ym and () Iy = 200 mW (vc = 1.9 um s~ ))and (b) I = 480 mW
(vc = 4.6 um s~ ). Grey horizontal dashed lines show the average velocity of observed mode locked steps with the grey regions denoting
the mode locked steps using the criteria from section 3.4. Blue dashed lines indicate the diffusion coefficient of a free particle,
Dy = 0.04 pm? s~

as its width, W), exhibits a maximum in a finite range of frequencies and is generally smaller than W and W. As
such, it is noteworthy that at v = 0.25 Hz W, ~ 0.24 um s~ is close to its maximum width while not being too
much smaller than W, and W at this frequency, which explains why the second step is observable in figure 2.

4.4. Effective diffusion coefficient

Finally, we study the effective diffusion coefficient of a particle moving across a temporally oscillating optical
landscape. The average velocity and the effective diffusion coefficient are calculated from equations (3) and (4),
respectively. Both quantities are plotted against the driving velocity vpc for two different values of laser power I
in figure 7.

In both plots, we see that an initial rise in the average velocity corresponds to a sharp rise in the effective
diffusion coefficient as the particle begins to exhibit a non-zero velocity. Upon approaching the first mode
locked step at vpc = 1.1 um s~ ' in figure 7(a), the effective diffusion coefficient is greatly reduced. This is due to
the periodic motion that a particle experiences when it is mode locked, leading to very low levels of effective
diffusion. The effective diffusion coefficient even drops below the diffusion coefficient measured for a free
particle, Dy = kgT/{ ~ 0.04 um? s~!, indicating that Brownian fluctuations are less significant on this mode
locked step than for a free particle. As the driving velocity is increased beyond vpc = 1.6 um s~ ', the particle is
no longer mode locked, and the effective diffusion coefficient rises again before slowly decreasing as the driving
velocity increases beyond vpc = 1.7 um s~ ', where the optical landscape has a diminishing effect on the particle
motion.
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Figure 8. Average velocity v,y (black solid line for simulations and red dashed line for equation (6)) and effective diffusion D (blue
solid line for simulations and red solid line for equation (7)) as functions of vpc plotted for A = 3.5 yum, v¢ = 4.6 um s},

v = 0.75 Hzand Dy = 0.04 umz s~ . The simulated data for v,y and D gare obtained from equations (3) and (4) by averaging
trajectories from simulations of equation (2). Grey horizontal dashed line shows the average velocity of mode locked step 1. Note that
the analytic approximations are accurate close to the critical points, but start to deviate from the numerical predictions away from
them.

In figure 7(b), which shows results for a higher v, the effective diffusion coefficient exhibits similar
behaviour for the first mode locked step as that seen in figure 7(a) but there is now a second mode locked step. At
higher velocities this second mode locked step causes another drop in the effective diffusion coefficient between
vpe = 2.9-3.4 um s~ . Simulated data shown in red correlate well with the experimental results, though further
reductions in the effective diffusion coefficient are seen. These plots show that when a particle is mode locked, its
motion is greatly restricted and in many cases leads to an effective diffusion coefficient that is even lower than
that of a freely diffusing particle.

To gain further insights into the behaviour of the effective diffusion coefficient, we will make use of the
predictions of the high-frequency theory (appendix). By comparing these predictions with those from
simulations, we will now show that the behaviour of a particle in the temporally oscillating potential at and close
to mode locking is similar to the Brownian motion in an effective stationary potential.

Consider Brownian motion of a colloidal particle in an effective time-independent potential that describes
the dynamics at and close to mode-locked step n at high frequencies, see appendix:

% = —A—V’ix — LY os k. 5)
kgT Dy kD,
Here, the constants Av, and o, are different for different steps, as given by equations (A.5) and (A.6). By
adapting known results for the average velocity [43] and effective diffusion [45], close to steps n = Oand 1, we
arrive at the corresponding expressions

2Dy sinh(7k,,)

v = n\v + 6
A A AL, (WP ©
and
A
T2 (x)Z_(x)dx
D = Do J BT @ ™

[ N L(x)de

where k, = Av,, /(kDy), 7, = ayvc/(kDo), Ta(x) = X! fo g exp[ (U (x) — UR(x F y))/ksT1dy,and
L. (y) is the modified Bessel function of the first kind.

As follows from expression (A.13), not only the width but also the location of step 1 grows with the
frequency, v. Thus, by considering higher frequencies, we increase the separation between steps 0 and 1 and the
predictions of high-frequency theory become more reliable. For the comparison with simulations we therefore
choose a frequency of v = 0.75 Hz. The corresponding results for the effective diffusion coefficient and the
average velocity plotted as functions of the driving velocity, vpc, are shown in figure 8. We see that at this
frequency the peaks in the effective diffusion coefficient associated with the end of step 0 and the onset of step 1
remain separated, unlike the single peak in D.gbetween steps 0 and 1 observed at v = 0.25 Hz in figure 7. Note
that the predictions of the high-frequency theory for both the average velocity (6) and effective diffusion (7) are
in excellent agreement with the results of numerical simulations. The latter is not accidental because the
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time-averaged equations (A.5) are obtained up to a finite-frequency correction of order O(v~!). Their accuracy
goes beyond the high-frequency limit, v — o0, which captures the terms up to order O(°).

Similarly to figure 7, we see that, due to synchronisation, the diffusion of the particle is strongly suppressed at
the mode locked steps, where it drops to zero exponentially fast. The particle is trapped by the landscape and the
dynamics are essentially deterministic. Close to the ends of the steps the diffusivity quickly starts to grow
outwards and significantly exceeds the value of the free diffusivity. The maxima are achieved close to the critical
points, v5¢; for step 0 and v"i* for step 1. These values are slightly different from the deterministic
predictions, see equations (A.9) and (A.13), due to thermal noise. Here, the tilt of the landscape reduces the
potential barrier of the optical landscape, and the particle easily escapes from a given well to the subsequent well
assisted by thermal noise, effectively increasing the diffusivity. Away from the steps, the presence of the
landscape becomes less relevant and the particle tends to exhibit free Brownian motion as one moves away from
the step. However, this remains only true in the case of perfectly separated steps. In our typical experimental
situation this condition is not well fulfilled and the peaks in the effective diffusion coefficient corresponding to
the neighbouring critical points start to interfere. This is clearly seen from comparing the results of the
simulations for v = 0.75 Hz plotted against the predictions of the reduced model with an effective potential, in
figure 8, to those in figure 7 for v = 0.25 Hz, where steps 0 and 1 are much closer. As a result, in the latter case
the corresponding diffusion peaks cannot be resolved and collapse into a single peak between the steps.

5. Conclusions

In this work, a colloidal sphere has been driven across a temporally oscillating one-dimensional optical potential
energy landscape. Particle motion was seen to exhibit dynamic mode locking corresponding to periodic particle
motion. This was visualised for the (1,0) and (2, 0) modes with the use of phase portraits. The effect of the laser
intensity, and hence v, on the step width was probed and was shown to have a high correlation with the zeroth
step width, however, the first step width was shown to have a weaker dependence. The effect of the oscillation
frequency on the step width was also studied and shown to be in line with a high-frequency theory for both
experiments and simulations. Furthermore, the effective diffusion coefficient was investigated and was seen to
be greatly reduced for a driving velocity corresponding to a mode locked step. Finally, the effective diffusion was
studied numerically and compared to deterministic predictions for the high frequency regime where excellent
agreement was observed.
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Appendix. High-frequency theory

To obtain analytical insights into transport properties, here we consider the special case of high frequencies,
where the external frequency v is high compared to the internal frequency v/ A, in which the equations of
motion can be simplified close to mode locking by means of time averaging.

We start by neglecting thermal fluctuations in equation (2) and writing it in terms of velocities

% = vpc — %(1 + coswt)sin kx, (A.1)

dr

where vpc = Fpc/Candvc = F¢/(. Insuch asystem, we expect mode locked (or synchronised) motion [35]
and will focus on the description of transport properties at and close to mode locked (Shapiro) steps. At step 1,
the particle is known to move with the average velocity n A [28, 29], which suggests an ansatz for the coordinate

x(t) = nivt + Ax(¢). (A.2)

Here, the first term on the right hand side is the averaged solution on mode locked step 7 and the second term, Ax(?),
denotes the deviation from it which becomes increasingly non-zero as we move away from the step. Applying this
ansatz to equation (A.1), expanding sin(nwt + kAx), and taking account of trigonometric identities

2 sin(nwt)cos(wt) = sin[(n + Dwt] + sin[(n — 1)wt]and 2 cos(nwt)cos(wt) = cos[(n + 1)wt] +

cos[(n — 1)wt], for the dynamics close to step # we obtain an equation
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d(Ax) _

1 Av, — VZ—C(I + coswt)sin (nwt + kAx)
t

=Av, — 1:}—C[cos(kAx)S,,(t) + sin(kAx) C,(1)] (A.3)

with Ay, = vpc — nAv and functions S,,(t) = sin[(n + 1)wt] + 2sin(nwt) + sin[(n — 1)wt]and
C,(t) = cos[(n + Dwt] + 2 cos(nwt) + cos[(n — 1)wt]. Up to this point, we have made no approximations.
To make analytical progress, we now proceed to time averaging of this equation. We assume that the
dynamics can be decomposed into slow (averaged) and fast (oscillatory) motion, and therefore Ax(t) = q + 4,
where g denotes Ax(t) averaged over the time period of oscillation and § contains explicit dependence on the
oscillatory timescale wt and multiples of it. Hereafter, the overbar is used to denote the time averaging. Similarly,
we decompose S = S + Sand C = C + C. Because generally § — 0as w — 00, for high but finite
frequencies it is natural to assume that |j| < |g|. Therefore, we can approximate
cos(kAx) ~ coskq — kg sin kq and sin(kAx) ~ sinkq + kg cos kq in equation (A.3). Further, finding a closed
solution for the oscillatory part 4 allows us to obtain a time averaged equation for the slowly evolving q.
First, keeping the leading oscillatory terms only in equation (A.3), we arrive at the equation that governs the
fast dynamics, dG/dt = —(vc/4)[S,(t)coskq + C,(¢)sin kq]. Taking into account that the slow evolution in
q (¢) is indepenent of fast oscillatory dynamics, we integrate the above equation to obtain the explicit solution
for g(t)

G(t) = L2, (t)coskq — 5,(t)sin kql, (A.4)
4w

where §,(¢) and ¢, (t) are determined by oscillatory parts of the expressions s, (t) = (n + 1)"!sin[(n + 1)wt]+
2n~ tsin(nwt) + (n — 1) 'sin[(n — Dwt]and ¢, (t) = (n + 1) Lcos[(n + Dwt] + 2n~ ! cos(nwt) +
(n — 1) tcos[(n — 1)wt]. A careful consideration of the special cases forn = 0, F 1,at which the terms
ocn~!l, (n £ 1)"!become formally singular, shows their actual absence in the corresponding definitions of s,,(¢)
and ¢,,(¢). Therefore, our general analysis for arbitrary n remains valid under the convention that every singular
term is omitted. Note also that as follows from equation (A.4), the oscillatory solution decays with the growth in
frequency as §(t) oc w™!, in accordance with the accepted assumption that § — 0 as w — 00.

Next, we proceed to performing the time averaging of equation (A.3). Because the time averaging of mixed
trigonometric terms is trivial, &,(t)S,(t) = 0, 5,(t)C,(t) = 0, the slow timescale dynamics is governed by the
equation

vék

d _ _
4 _ Av, — Z—C(Sn coskq + C,sinkq) — e,
w

dr
with Q = &,(t)C,(t) cos>kq + 5,(t)S,(t) sin® kq evaluated by noticing that &,(t) C,,(t) =5,(t)S,(t) =
(n 4 1) 'sin’[(n + Dwt] 4 4n~sin*(nwt) 4 (n — 1) 'sin’[(n — Dwt] = [(n + 17" +
4n! +m—1 Y 11/2. As directly follows from the definitions of S,(f) and C,,(t), we have S, = 0 foralln > 0,
andCy = 2,C, = land C, = Oforalln > 2.
As aresult, the slow timescale evolution obeys a simple equation

ﬂ = Av) — a,vcsinkg, Av) = vpc — n\v — 6"—1/(23 (A.5)
dt AU
with the coefficients
1/2 n=o0, 0 n=0,
aw=141/4 n=1, §,=4%/64+ n=1 (A.6)
0, n>2, Sl B

16n(n?—1)"

The time averaged equations allow a simple interpretation for transport properties. We note that the correction
8,v¢/(Av), which describes a small shift of the mode-locked steps, vanishes in the high-frequency limit v — oo
corresponding to approximation §(t) = 0in equation (A.4). Requiring smallness of this correction in
comparison with the term Av specifies the validity condition of the high-frequency approximation. For example,
for the most interesting case n = 1 we find the criterium of high frequency tobe v > 3vs /(8)\). We now
consider the transport properties in more detais.

A.1.Zeroth modelocked step
Forn = 0, wehave Avy = vpc, x(t) = q(#), and equation (A.5) reduces to

dx vc .
— = ypc — —sinkx, A7
” bc~ - (A7)
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which leads to the average velocity close to the zeroth mode locked summarised as [43]

0, 0 < vpc < ve/2

Vay = (A.8)
Vb — (e /2%, vpe > ve /2.

The critical velocity corresponds to the situation when the two branches of equation (A.8) coincide. This
happens when the square root vanishes, and we obtain

ygind — iVZ—C. (A.9)
Since we consider only positive values of vpc, the width of step 0 corresponds to
Wo = vits = VZ—C (A.10)

A.2. First mode locked step
Forn = 1,wehave Av/ = vpc — A\ — 913/ (64)\v), the original coordinate x(t) = A\v + q(t),and
equation (A.5) yields
dq
dr

Similarly to the case, n = 0, this gives rise to an average velocity at, or close to, the mode locked step wheren = 1

= Ay — Z—C sin kx. (A.11)

v, AV | < ve/4
A+ JAVY)? — (ie/8?,  |AY] > ve /4.

1) _

W = (A.12)

Note that depending on the frequency v, the quantity Av/ can take both positive and negative values, while v
remains non-negative. The critical velocities are determined by the vanishing square root, which yields

; 92 Ve
Vcrlt,i — \v + C + _C A3
et 64 v 4 (A-13)
Thus, the first mode locked step is centered at the value A + 912/ (64\) and has the width
Wi = vt — vl = X2 (A.14)

2

A.3. Higher order mode locked steps
For the case of n > 2, the time average of equation (A.5) is vastly simplified and only the first constant term
remains,

2 .2
d_q e AVYII = VpC — I’l)\l/ — M
dt 16n(n*> — 1)

This means that the optical potential is effectively vanishing, leading to the trivial result for the average velocity

(n > 2). (A.15)

6 2
N ;ZC W,=0, n>2. (A.16)

Hence, we find a step width of 0 for all n > 2. This is very different to what is seen for a mode locked system with
an oscillating driving force [28, 29] where mode locking steps exits for all integer , as has been experimentally
observed forupton = 6.
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