We study the transport of Brownian particles through a corrugated channel
caused by a force field containing curl-free (scalar potential) and
divergence-free (vector potential) parts. We develop a generalized Fick-Jacobs
approach leading to an effective one-dimensional description involving the
potential of mean force. As an application, the interplay of a pressure-driven
flow and an oppositely oriented constant bias is considered. We show that for
certain parameters, the particle diffusion is significantly suppressed via the
property of hyrodynamically enforced entropic particle trapping.Comment: 5 pages, 4 figures, in press with Physical Review Letter