1,153 research outputs found

    Experiences of breastfeeding during COVID‐19: Lessons for future practical and emotional support

    Get PDF
    The COVID-19 pandemic and subsequent lockdown and social distancing led to changes to breastfeeding support available to women in the United Kingdom. Face-to-face professional support was reduced, and face-to-face peer support was cancelled. Anecdotal media accounts highlighted practices separating some mothers and babies in hospitals, alongside inaccurate stories of the safety of breastfeeding circulating. Meanwhile, new families were confined to their homes, separated from families and support networks. Given that we know breastfeeding is best supported by practices that keep mother and baby together, high-quality professional and peer-to-peer support, and positive maternal well-being, it is important to understand the impact of the pandemic upon the ability to breastfeed. To explore this, we conducted an online survey with 1219 breastfeeding mothers in the United Kingdom with a baby 0-12 months old to understand the impact of the pandemic upon breastfeeding duration, experiences and support. The results highlighted two very different experiences: 41.8% of mothers felt that breastfeeding was protected due to lockdown, but 27.0% of mothers struggled to get support and had numerous barriers stemming from lockdown with some stopped breastfeeding before they were ready. Mothers with a lower education, with more challenging living circumstances and from Black and minority ethnic backgrounds were more likely to find the impact of lockdown challenging and stop breastfeeding. The findings are vital in understanding how we now support those women who may be grieving their loss of breastfeeding and are affected by their negative experiences and how we can learn from those with a positive experience to make sure all breastfeeding women are better supported if similar future events arise

    Future Foam

    Full text link
    We study pocket universes which have zero cosmological constant and non-trivial boundary topology. These arise from bubble collisions in eternal inflation. Using a simplified dust model of collisions we find that boundaries of any genus can occur. Using a radiation shell model we perform analytic studies in the thin wall limit to show the existence of geometries with a single toroidal boundary. We give plausibility arguments that higher genus boundaries can also occur. In geometries with one boundary of any genus a timelike observer can see the entire boundary. Geometries with multiple disconnected boundaries can also occur. In the spherical case with two boundaries the boundaries are separated by a horizon. Our results suggest that the holographic dual description for eternal inflation, proposed by Freivogel, Sekino, Susskind and Yeh, should include summation over the genus of the base space of the dual conformal field theory. We point out peculiarities of this genus expansion compared to the string perturbation series.Comment: 23 pages, 6 figure

    Multi-Instantons and Multi-Cuts

    Full text link
    We discuss various aspects of multi-instanton configurations in generic multi-cut matrix models. Explicit formulae are presented in the two-cut case and, in particular, we obtain general formulae for multi-instanton amplitudes in the one-cut matrix model case as a degeneration of the two-cut case. These formulae show that the instanton gas is ultra-dilute, due to the repulsion among the matrix model eigenvalues. We exemplify and test our general results in the cubic matrix model, where multi-instanton amplitudes can be also computed with orthogonal polynomials. As an application, we derive general expressions for multi-instanton contributions in two-dimensional quantum gravity, verifying them by computing the instanton corrections to the string equation. The resulting amplitudes can be interpreted as regularized partition functions for multiple ZZ-branes, which take into full account their back-reaction on the target geometry. Finally, we also derive structural properties of the trans-series solution to the Painleve I equation.Comment: 34 pages, 3 figures, JHEP3.cls; v2: added references, minor changes; v3: added 1 reference, more minor changes, final version for JMP; v4: more typos correcte

    Chaos in a well : Effects of competing length scales

    Full text link
    A discontinuous generalization of the standard map, which arises naturally as the dynamics of a periodically kicked particle in a one dimensional infinite square well potential, is examined. Existence of competing length scales, namely the width of the well and the wavelength of the external field, introduce novel dynamical behaviour. Deterministic chaos induced diffusion is observed for weak field strengths as the length scales do not match. This is related to an abrupt breakdown of rotationally invariant curves and in particular KAM tori. An approximate stability theory is derived wherein the usual standard map is a point of ``bifurcation''.Comment: 15 pages, 5 figure

    Volume Weighted Measures of Eternal Inflation in the Bousso-Polchinski Landscape

    Get PDF
    We consider the cosmological dynamics associated with volume weighted measures of eternal inflation, in the Bousso-Polchinski model of the string theory landscape. We find that this measure predicts that observers are most likely to find themselves in low energy vacua with one flux considerably larger than the rest. Furthermore, it allows for a satisfactory anthropic explanation of the cosmological constant problem by producing a smooth, and approximately constant, distribution of potentially observable values of Lambda. The low energy vacua selected by this measure are often short lived. If we require anthropically acceptable vacua to have a minimum life-time of 10 billion years, then for reasonable parameters a typical observer should expect their vacuum to have a life-time of approximately 12 billion years. This prediction is model dependent, but may point toward a solution to the coincidence problem of cosmology.Comment: 35 pages, 8 figure

    Instanton Effects in Matrix Models and String Effective Lagrangians

    Get PDF
    We perform an explicit calculation of the lowest order effects of single eigenvalue instantons on the continuous sector of the collective field theory derived from a d=1d=1 bosonic matrix model. These effects consist of certain induced operators whose exact form we exhibit.Comment: Latex document, 36 pages, includes 6 figures appended as uuencoded eps files, preprint CERN-TH.7301/94, UPR-608

    Eternal Symmetree

    Full text link
    In this paper we introduce a simple discrete stochastic model of eternal inflation that shares many of the most important features of the continuum theory as it is now understood. The model allows us to construct a multiverse and rigorously analyze its properties. Although simple and easy to solve, it has a rich mathematical structure underlying it. Despite the discreteness of the space-time the theory exhibits an unexpected non-perturbative analog of conformal symmetry that acts on the boundary of the geometry. The symmetry is rooted in the mathematical properties of trees, p-adic numbers, and ultrametric spaces; and in the physical property of detailed balance. We provide self-contained elementary explanations of the unfamiliar mathematical concepts, which have have also appeared in the study of the p-adic string. The symmetry acts on a huge collection of very low dimensional "multiverse fields" that are not associated with the usual perturbative degrees of freedom. They are connected with the late-time statistical distribution of bubble-universes in the multiverse. The conformal symmetry which acts on the multiverse fields is broken by the existence of terminal decays - to hats or crunches - but in a particularly simple way. We interpret this symmetry breaking as giving rise to an arrow of time. The model is used to calculate statistical correlations at late time and to discuss the measure problem. We show that the natural cutoff in the model is the analog of the so-called light-cone-time cutoff. Applying the model to the problem of the cosmological constant, we find agreement with earlier work.Comment: 39 pages plus appendices, with 11 figures. Journal version (PRD). A discussion of the arrow of time added, along with various other minor clarifications suggested by an anonymous referee. References also adde

    Analytic Study for the String Theory Landscapes via Matrix Models

    Full text link
    We demonstrate a first-principle analysis of the string theory landscapes in the framework of non-critical string/matrix models. In particular, we discuss non-perturbative instability, decay rate and the true vacuum of perturbative string theories. As a simple example, we argue that the perturbative string vacuum of pure gravity is stable; but that of Yang-Lee edge singularity is inescapably a false vacuum. Surprisingly, most of perturbative minimal string vacua are unstable, and their true vacuum mostly does not suffer from non-perturbative ambiguity. Importantly, we observe that the instability of these tachyon-less closed string theories is caused by ghost D-instantons (or ghost ZZ-branes), the existence of which is determined only by non-perturbative completion of string theory.Comment: v1: 5 pages, 2 figures; v2: references and footnote added; v3: 7 pages, 4 figures, organization changed, explanations expanded, references added, reconstruction program from arbitrary spectral curves shown explicitl

    Lymphoid Susceptibility to the Aggregatibacter Actinomycetemcomitans Cytolethal Distending Toxin is Dependent Upon Baseline Levels of the Signaling Lipid, Phosphatidylinositol-3,4,5-Triphosphate

    Get PDF
    The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces G2 arrest and apoptosis in lymphocytes and other cell types. We have shown that the active subunit, CdtB, exhibits phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase activity and depletes lymphoid cells of PIP3. Hence we propose that Cdt toxicity results from depletion of this signaling lipid and perturbation of phosphatidylinositol-3-kinase (PI-3K)/PIP3/Akt signaling. We have now focused on the relationship between cell susceptibility to CdtB and differences in the status of baseline PIP3 levels. Our studies demonstrate that the baseline level of PIP3, and likely the dependence of cells on steady-state activity of the PI-3K signaling pathway for growth and survival, influence cell susceptibility to the toxic effects of Cdt. Jurkat cells with known defects in both PIP3 degradative enzymes, PTEN and SHIP1, not only contain high baseline levels of PIP3, pAkt, and pGSK3β, but also exhibit high sensitivity to Cdt. In contrast, HUT78 cells, with no known defects in this pathway, contain low levels of PIP3, pAkt, and pGSK3β and likely minimal dependence on the PI-3K signaling pathway for growth and survival, and exhibit reduced susceptibility to Cdt. These differences in susceptibility to Cdt cannot be explained by differential toxin binding or internalization of the active subunit. Indeed, we now demonstrate that Jurkat and HUT78 cells bind toxin at comparable levels and internalize relatively equal amounts of CdtB. The relevance of these observations to the mode of action of Cdt and its potential role as a virulence factor isdiscussed. © 2016 John Wiley & Sons A/S

    The Cost of Stability in Coalitional Games

    Get PDF
    A key question in cooperative game theory is that of coalitional stability, usually captured by the notion of the \emph{core}--the set of outcomes such that no subgroup of players has an incentive to deviate. However, some coalitional games have empty cores, and any outcome in such a game is unstable. In this paper, we investigate the possibility of stabilizing a coalitional game by using external payments. We consider a scenario where an external party, which is interested in having the players work together, offers a supplemental payment to the grand coalition (or, more generally, a particular coalition structure). This payment is conditional on players not deviating from their coalition(s). The sum of this payment plus the actual gains of the coalition(s) may then be divided among the agents so as to promote stability. We define the \emph{cost of stability (CoS)} as the minimal external payment that stabilizes the game. We provide general bounds on the cost of stability in several classes of games, and explore its algorithmic properties. To develop a better intuition for the concepts we introduce, we provide a detailed algorithmic study of the cost of stability in weighted voting games, a simple but expressive class of games which can model decision-making in political bodies, and cooperation in multiagent settings. Finally, we extend our model and results to games with coalition structures.Comment: 20 pages; will be presented at SAGT'0
    corecore